Search results for: 3d mesh morphing
258 The Exact Specification for Consumption of Blood-Pressure Regulating Drugs with a Numerical Model of Pulsatile Micropolar Fluid Flow in Elastic Vessel
Authors: Soroush Maddah, Houra Asgarian, Mahdi Navidbakhsh
Abstract:
In the present paper, the problem of pulsatile micropolar blood flow through an elastic artery has been studied. An arbitrary Lagrangian-Eulerian (ALE) formulation for the governing equations has been produced to model the fully-coupled fluid-structure interaction (FSI) and has been solved numerically using finite difference scheme by exploiting a mesh generation technique which leads to a uniformly spaced grid in the computational plane. Effect of the variations of cardiac output and wall artery module of elasticity on blood pressure with blood-pressure regulating drugs like Atenolol has been determined. Also, a numerical model has been produced to define precisely the effects of various dosages of a drug on blood flow in arteries without the numerous experiments that have many mistakes and expenses.Keywords: arbitrary Lagrangian-Eulerian, Atenolol, fluid structure interaction, micropolar fluid, pulsatile blood flow
Procedia PDF Downloads 421257 Numerical Investigation of Wave Run-Up on Curved Dikes
Authors: Suba Periyal Subramaniam, Babette Scheres, Altomare Corrado, Holger Schuttrumpf
Abstract:
Due to the climatic change and the usage of coastal areas, there is an increasing risk of dike failures along the coast worldwide. Wave run-up plays a key role in planning and design of a coastal structure. The coastal dike lines are bent either due to geological characteristics or due to influence of anthropogenic activities. The effect of the curvature of coastal dikes on wave run-up and overtopping is not yet investigated. The scope of this research is to find the effects of the dike curvature on wave run-up by employing numerical model studies for various dike opening angles. Numerical simulation is carried out using DualSPHysics, a meshless method, and OpenFOAM, a mesh-based method. The numerical results of the wave run-up on a curved dike and the wave transformation process for various opening angles, wave attacks, and wave parameters will be compared and discussed. This research aims to contribute a more precise analysis and understanding the influence of the curvature in the dike line and thus ensuring a higher level of protection in the future development of coastal structures.Keywords: curved dikes, DualSPHysics, OpenFOAM, wave run-up
Procedia PDF Downloads 149256 On the Evaluation of Different Turbulence Models through the Displacement of Oil-Water Flow in Porous Media
Authors: Sidique Gawusu, Xiaobing Zhang
Abstract:
Turbulence models play a significant role in all computational fluid dynamics based modelling approaches. There is, however, no general turbulence model suitable for all flow scenarios. Therefore, a successful numerical modelling approach is only achievable if a more appropriate closure model is used. This paper evaluates different turbulence models in numerical modelling of oil-water flow within the Eulerian-Eulerian approach. A comparison among the obtained numerical results and published benchmark data showed reasonable agreement. The domain was meshed using structured mesh, and grid test was performed to ascertain grid independence. The evaluation of the models was made through analysis of velocity and pressure profiles across the domain. The models were tested for their suitability to accurately obtain a scalable and precise numerical experience. As a result, it is found that all the models except Standard-ω provide comparable results. The study also revealed new insights on flow in porous media, specifically oil reservoirs.Keywords: turbulence modelling, simulation, multi-phase flows, water-flooding, heavy oil
Procedia PDF Downloads 279255 Investigation the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery
Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.Keywords: CFD, simulation, OpenFOAM, heart
Procedia PDF Downloads 149254 Effective Method of Paneling for Source/Vortex/Doublet Panel Methods Using Conformal Mapping
Authors: K. C. R. Perera, B. M. Hapuwatte
Abstract:
This paper presents an effective method to divide panels for mesh-less methods of source, vortex and doublet panel methods. In this research study the physical domain of air-foils were transformed into computational domain of a circle using conformal mapping technique of Joukowsky transformation. Then the circle is divided into panels of equal length and the co-ordinates were remapped into physical domain of the air-foil. With this method the leading edge and the trailing edge of the air-foil is panelled with a high density of panels and the rest of the body is panelled with low density of panels. The high density of panels in the leading edge and the trailing edge will increase the accuracy of the solutions obtained from panel methods where the fluid flow at the leading and trailing edges are complex.Keywords: conformal mapping, Joukowsky transformation, physical domain, computational domain
Procedia PDF Downloads 376253 Numerical Method for Fin Profile Optimization
Authors: Beghdadi Lotfi
Abstract:
In the present work a numerical method is proposed in order to optimize the thermal performance of finned surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry, effectiveness
Procedia PDF Downloads 268252 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid
Authors: D. Šedivý, S. Fialová
Abstract:
The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid
Procedia PDF Downloads 386251 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators
Authors: N. Naz, A. D. Domenico, M. N. Huda
Abstract:
Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator
Procedia PDF Downloads 90250 Using Fishers Knowledge in Community Based Fisheries Management in River Nun Estuary, Niger Delta
Authors: Sabina Ngodigha, Roland Gbarabe, Aiyebatonworio Austin
Abstract:
A study of fisher’s knowledge (FK) and community-based fisheries management practices in River Nun estuary was conducted to assess the contribution of FK to fisheries resources conservation. A total of 390 fishers operates in the area of which 221 were interviewed based on having a minimum of 10 years of experience. Community-based fisheries management programme was introduced and implemented by fishermen’s union in 2010 for the sustainable management and conservation of fisheries resources. Local law introduced were: band on the use of mesh size of less than 5cm and band on chemical fishing. Defaulters were made to pay monetary fines ranging from #2,000 to #6,000 while fishers caught using chemicals to fish were arrested and landed over to the police for prosecution. The management method has enhanced conservation of fisheries resources which is a major source of livelihood for the people. Landings increased tremendously resulting in positive increase in the finances of the fishers. It is, therefore, pertinent to introduce community-based laws to check over exploitation of fisheries resources in the Niger Delta.Keywords: community, conservation, fishers knowledge, local laws, management
Procedia PDF Downloads 279249 Numerical Method of Heat Transfer in Fin Profiles
Authors: Beghdadi Lotfi, Belkacem Abdellah
Abstract:
In this work, a numerical method is proposed in order to solve the thermal performance problems of heat transfer of fins surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry
Procedia PDF Downloads 405248 Heritage 3D Digitalization Combining High Definition Photogrammetry with Metrologic Grade Laser Scans
Authors: Sebastian Oportus, Fabrizio Alvarez
Abstract:
3D digitalization of heritage objects is widely used nowadays. However, the most advanced 3D scanners in the market that capture topology and texture at the same time, and are specifically made for this purpose, don’t deliver the accuracy that is needed for scientific research. In the last three years, we have developed a method that combines the use of Metrologic grade laser scans, that allows us to work with a high accuracy topology up to 15 times more precise and combine this mesh with a texture obtained from high definition photogrammetry with up to 100 times more pixel concentrations. The result is an accurate digitalization that promotes heritage preservation, scientific study, high detail reproduction, and digital restoration, among others. In Chile, we have already performed 478 digitalizations of high-value heritage pieces and compared the results with up to five different digitalization methods; the results obtained show a considerable better dimensional accuracy and texture resolution. We know the importance of high precision and resolution for academics and museology; that’s why our proposal is to set a worldwide standard using this open source methodology.Keywords: 3D digitalization, digital heritage, heritage preservation, digital restauration, heritage reproduction
Procedia PDF Downloads 188247 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector
Authors: Ahmed Al-Adaileh, Souheil Khaddaj
Abstract:
Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data
Procedia PDF Downloads 196246 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading
Authors: A. Gherbi, L. Dahmani, A. Boudjemia
Abstract:
This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.Keywords: ANSYS, cracking pattern, displacements, reinforced concrete slab, smeared reinforcements
Procedia PDF Downloads 199245 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application
Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas
Abstract:
The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system
Procedia PDF Downloads 352244 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network
Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy
Abstract:
Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.Keywords: encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast
Procedia PDF Downloads 410243 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array
Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin
Abstract:
We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell
Procedia PDF Downloads 149242 Sniff-Camera for Imaging of Ethanol Vapor in Human Body Gases after Drinking
Authors: Toshiyuki Sato, Kenta Iitani, Koji Toma, Takahiro Arakawa, Kohji Mitsubayashi
Abstract:
A 2-dimensional imaging system (Sniff-camera) for gaseous ethanol emissions from a human palm skin was constructed and demonstrated. This imaging system measures gaseous ethanol concentrations as intensities of chemiluminescence (CL) by luminol reaction induced by alcohol oxidase and luminol-hydrogen peroxide system. A conversion of ethanol distributions and concentrations to 2-dimensional CL was conducted on an enzyme-immobilized mesh substrate in a dark box, which contained a luminol solution. In order to visualize ethanol emissions from human palm skin, we developed highly sensitive and selective imaging system for transpired gaseous ethanol at sub ppm-levels. High sensitivity imaging allows us to successfully visualize the emissions dynamics of transdermal gaseous ethanol. The intensity of each pixel on the palm shows the reflection of ethanol concentrations distributions based on the metabolism of oral alcohol administration. This imaging system is significant and useful for the assessment of ethanol measurement of the palmar skin.Keywords: sniff-camera, gas-imaging, ethanol vapor, human body gas
Procedia PDF Downloads 370241 Simultaneous Saccharification and Co-Fermentation of Paddy Straw and Fruit Wastes into Ethanol Production
Authors: Kamla Malik
Abstract:
For ethanol production from paddy straw firstly pretreatment was done by using sodium hydroxide solution (2.0%) at 15 psi for 1 hr. The maximum lignin removal was achieved with 0.5 mm mesh size of paddy straw. It contained 72.4 % cellulose, 15.9% hemicelluloses and 2.0 % lignin after pretreatment. Paddy straw hydrolysate (PSH) with fruits wastes (5%), such as sweet lime, apple, sapota, grapes, kinnow, banana, papaya, mango, and watermelon were subjected to simultaneous saccharification and co-fermentation (SSCF) for 72 hrs by co-culture of Saccharomyces cerevisiae HAU-1 and Candida sp. with 0.3 % urea as a cheap nitrogen source. Fermentation was carried out at 35°C and determined ethanol yield at 24 hours interval. The maximum production of ethanol was produced within 72 hrs of fermentation in PSH + sapota peels (3.9% v/v) followed by PSH + kinnow peels (3.6%) and PSH+ papaya peels extract (3.1 %). In case of PSH+ banana peels and mango peel extract the ethanol produced were 2.8 % and 2.2 % (v/v). The results of this study suggest that wastes from fruits that contain fermentable sugar should not be discarded into our environment, but should be supplemented in paddy straw which converted to useful products like bio-ethanol that can serve as an alternative energy source.Keywords: ethanol, fermentation, fruit wastes, paddy straw
Procedia PDF Downloads 390240 Large Eddy Simulation of Particle Clouds Using Open-Source CFD
Authors: Ruo-Qian Wang
Abstract:
Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill
Procedia PDF Downloads 429239 SIF Computation of Cracked Plate by FEM
Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel
Abstract:
The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration
Procedia PDF Downloads 337238 Failure Mode Effect and Criticality Analysis Based Maintenance Planning through Traditional and Multi-Criteria Decision Making Approach for Aluminium Wire Rolling Mill Plant
Authors: Nilesh Pancholi, Mangal Bhatt
Abstract:
This paper highlights comparative results of traditional FMECA and multi-factor decision-making approach based on “Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)” for aluminum wire rolling mill plant. The suggested study is carried out to overcome the limitations of FMECA by assigning the scores against each failure modes in crisp values to evaluate the criticalities of the failure modes without uncertainty. The primary findings of the paper are that sudden impact on the rolls seems to be most critical failure cause and high contact stresses due to rolling & sliding action of mesh to be least critical failure cause. It is suggested to modify the current control practices with proper maintenance strategy based on achieved maintainability criticality index (MCI). The outcome of the study will be helpful in deriving optimized maintenance plan to maximize the performance of continuous process industry.Keywords: reliability, maintenance, FMECA, TOPSIS, process industry
Procedia PDF Downloads 278237 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading
Authors: Vaso K. Kapnopoulou, Piero Caridis
Abstract:
The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.Keywords: dynamic load cases, finite element method, high cycle fatigue, lower hopper knuckle
Procedia PDF Downloads 419236 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes
Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi
Abstract:
The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees
Procedia PDF Downloads 146235 Prevalence of Depression among Post Stroke Survivors in South Asian Region: A Systematic Review and Meta-Analysis
Authors: Roseminu Varghese, Laveena Anitha Barboza, Jyothi Chakrabarty, Ravishankar
Abstract:
Depression among post-stroke survivors is prevalent, but it is unidentified. The purpose of this review was to determine the pooled prevalence of depression among post-stroke survivors in the South Asian region from all published health sciences research articles. The review also aimed to analyze the disparities in the prevalence of depression among the post-stroke survivors from different study locations. Data search to identify the relevant research articles published from 2005 to 2016 was done by using mesh terms and keywords in Web of Science, PubMed Medline, CINAHL, Scopus, J gate, IndMED databases. The final analysis comprised of 9 studies, including a population of 1,520 men and women. Meta-analysis was performed in STATA version 13.0. The overall pooled post-stroke depression prevalence was 0.46, 95% (CI), (0.3- 0.62). The prevalence rate in this systematic review is evident of depression among post-stroke survivors in the South Asian Region. Identifying the prevalence of post-stroke depression at an early stage is important to improve outcomes of the rehabilitative process of stroke survivors and for its early intervention.Keywords: depression, post stroke survivors, prevalence, systematic review
Procedia PDF Downloads 158234 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers
Authors: Margarita Dufresne
Abstract:
This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel
Procedia PDF Downloads 71233 Statistical Shape Analysis of the Human Upper Airway
Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar
Abstract:
The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.Keywords: medical imaging, image processing, FEM/BEM, statistical modelling
Procedia PDF Downloads 514232 Numerical Analysis of Heat Transfer Characteristics of an Orthogonal and Obliquely Impinging Air Jet on a Flat Plate
Authors: Abdulrahman Alenezi
Abstract:
This research paper investigates the surface heat transfer characteristics using computational fluid dynamics for orthogonal and inclined impinging jet. A jet Reynolds number (Rₑ) of 10,000, jet-to- plate spacing (H/D) of two and eight and two angles of impingement (α) of 45° and 90° (orthogonal) were employed in this study. An unconfined jet impinges steadily a constant temperature flat surface using air as working fluid. The numerical investigation is validated with an experimental study. This numerical study employs grid dependency investigation and four different types of turbulence models including the transition SSD to accurately predict the second local maximum in Nusselt number. A full analysis of the effect of both turbulence models and mesh size is reported. Numerical values showed excellent agreement with the experimental data for the case of orthogonal impingement. For the case of H/D =6 and α=45° a maximum percentage error of approximately 8.8% occurs of local Nusselt number at stagnation point. Experimental and numerical correlations are presented for four different casesKeywords: turbulence model, inclined jet impingement, single jet impingement, heat transfer, stagnation point
Procedia PDF Downloads 398231 Using Computational Fluid Dynamics to Model and Design a Preventative Application for Strong Wind
Authors: Ming-Hwi Yao, Su-Szu Yang
Abstract:
Typhoons are one of the major types of disasters that affect Taiwan each year and that cause severe damage to agriculture. Indeed, the damage exacted during a typical typhoon season can be up to $1 billion, and is responsible for nearly 75% of yearly agricultural losses. However, there is no consensus on how to reduce the damage caused by the strong winds and heavy precipitation engendered by typhoons. One suggestion is the use of windbreak nets, which are a low-cost and easy-to-use disaster mitigation strategy for crop production. In the present study, we conducted an evaluation to determine the optimal conditions of a windbreak net by using a computational fluid dynamics (CFD) model. This model may be used as a reference for crop protection. The results showed that CFD simulation validated windbreak nets of different mesh sizes and heights in the experimental area; thus, CFD is an efficient tool for evaluating the effectiveness of windbreak nets. Specifically, the effective wind protection length and height were found to be 6 and 1.3 times the length and height of the windbreak net, respectively. During a real typhoon, maximum wind gusts of 18 m s-1 can be reduced to 4 m s-1 by using a windbreak net that has a 70% blocking rate. In short, windbreak nets are significantly effective in protecting typhoon-affected areas.Keywords: computational fluid dynamics, disaster, typhoon, windbreak net
Procedia PDF Downloads 191230 Alternative Hypotheses on the Role of Oligodendrocytes in Neurocysticercosis: Comprehensive Review
Authors: Humberto Foyaca Sibat, Lourdes de Fátima Ibañez Valdés
Abstract:
Background Cysticercosis (Ct) is a preventable and eradicable zoonotic parasitic disease secondary to a cestode infection by the larva form of pig tapeworm Taenia solium (Ts), mainly seen in people living in developing countries. When the cysticercus is in the brain parenchymal, intraventricular system, subarachnoid space (SAS), cerebellum, brainstem, optic nerve, or spinal cord, then it has named neurocysticercosis (NCC), and the often-clinical manifestations are headache and epileptic seizures/epilepsy among other less frequent symptoms and signs. In this study, we look for a manuscript related to the role played by oligodendrocytes in the pathogenesis of NCC. We review this issue and formulate some hypotheses regarding its role and the role played in the pathogenesis of calcified NCC and epileptic seizures, and secondary epilepsy. Method: We searched the medical literature comprehensively, looking for published medical subject heading (MeSH) terms like "neurocysticercosis", "pathogenesis of neurocysticercosis", "comorbidity in NCC"; OR "oligodendrocytes"; OR "oligodendrocyte precursor cells(OPC/NG2)"; OR "epileptic seizures(ES)/Epilepsy(Ep)/NCC" OR "oligodendrocytes(OLG)/ES/Ep”; OR "calcified NCC/OLG"; OR “OLG Ca2+.” Results: All selected manuscripts were peer-reviewed, and we did not find publications related to OLG/NCC.Keywords: oligodendrocytes, neurocysticercosis, oligodendrocytes, oligodendrocyte precursor cell, KG2, calcified neurocysticercosis, cellular calcium influx.
Procedia PDF Downloads 75229 A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process
Authors: Amol M. Jadhav, Sharad S. Chudhari, S. S. Khedkar
Abstract:
This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material.Keywords: metal spinning, FEM analysis, simulation of metal spinning, mechanical engineering
Procedia PDF Downloads 387