Search results for: multi-temporal image classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4559

Search results for: multi-temporal image classification

1919 High Capacity Reversible Watermarking through Interpolated Error Shifting

Authors: Hae-Yeoun Lee

Abstract:

Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error precompensation. The intensity of a pixel is interpolated from the intensities of neighbouring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error precompensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.

Keywords: reversible watermarking, high capacity, high quality, interpolated error shifting, error precompensation

Procedia PDF Downloads 322
1918 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition

Procedia PDF Downloads 177
1917 Effect of the Hardness of Spacer Agent on Structural Properties of Metallic Scaffolds

Authors: Mohammad Khodaei, Mahmood Meratien, Alireza Valanezhad, Serdar Pazarlioglu, Serdar Salman, Ikuya Watanabe

Abstract:

Pore size and morphology plays a crucial role on mechanical properties of porous scaffolds. In this research, titanium scaffold was prepared using space holder technique. Sodium chloride and ammonium bicarbonate were utilized as spacer agent separately. The effect of the hardness of spacer on the cell morphology was investigated using scanning electron microscopy (SEM) and optical stereo microscopy. Image analyzing software was used to interpret the microscopic images quantitatively. It was shown that sodium chloride, due to its higher hardness, maintain its morphology during cold compaction, and cause better replication in porous scaffolds.

Keywords: Spacer, Titanium Scaffold, Pore Morphology, Space Holder Technique

Procedia PDF Downloads 289
1916 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
1915 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan

Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou

Abstract:

This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.

Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve

Procedia PDF Downloads 292
1914 Drivers and Barriers for Implementing Environmental Management in Beverage Processors: A Case of Thailand

Authors: Auttasuriyanan Pakpoom, Setthasakko Watchaneeporn

Abstract:

The main purpose of this study is to gain a clearer understanding of key determinants that drive environmental management and barriers that hinder its development. The study employs semi-structured interviews with key informants accompanied by site observations. Key informants include production, environmental and plant managers of six beverage companies, including three Thai and three multinational companies in Thailand. It is found that corporate image, government subsidies, top management leadership and education institutes are four primary factors influencing the implementation of environmental management in the beverage processors. No demand from Asian buyers, employee resistance to change and lack of environmental knowledge are identified as barriers.

Keywords: environmental management, beverage, government subsidies, education institutes, employee resistance, environmental knowledge, Thailand

Procedia PDF Downloads 250
1913 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change

Authors: Mikhail Zarechnev, Bora I. Kumova

Abstract:

A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.

Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning

Procedia PDF Downloads 411
1912 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 200
1911 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test

Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi

Abstract:

Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.

Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete

Procedia PDF Downloads 147
1910 Impact of Implementation of 5S and TPM in Industrial Organizations: A Review

Authors: Jamal Ahmed Hama Kareem, Noraini Abu Talib

Abstract:

The purpose of this paper is to explore the literature on 5S and Total Productive Maintenance (TPM) and the benefits that are to be derived from their implementation. It also seeks to highlight the main phases for implementing both the 5S and the TPM successfully, along with highlighting aspects that are needed for successful implementation of these two techniques simultaneously in the contemporary manufacturing scenario. The literature on classification of 5S and TPM has so far been very limited. The paper reviews a large number of papers in this field and presents the overview of several of implementation practices of 5S and TPM, and the benefits that can be achieved by the implementation of 5S and TPM as a one system by industrial organizations globally. The paper systematically categorizes the published literature and reveals important issues that influence the successful implementation of 5S and TPM in organizations to improve production effectiveness for competitiveness. Further, the paper also highlights various phases suggested by researchers and practitioners, which ensure smooth and effective implementation of the 5S and TPM in industrial organizations. In the end, study puts forth propositions based on the model of the study after extensive review of literature. The paper will be useful to researchers, maintenance professionals and other concerned officials with improving the performance of production processes effectiveness in industrial organizations.

Keywords: 5S, Total Productive Maintenance (TPM), phases of implementation of 5S and TPM, industrial organizations

Procedia PDF Downloads 617
1909 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
1908 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours

Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal

Abstract:

Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.

Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography

Procedia PDF Downloads 80
1907 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 132
1906 Elaboration and Characterization of CdxZn1-XS Thin Films Deposed by Chemical Bath Deposition

Authors: Zellagui Rahima, Chaumont Denis, Boughelout Abderrahman, Adnane Mohamed

Abstract:

Thin films of CdxZn1-xS were deposed by chemical bath deposition on glass substrates for photovoltaic applications. The thin films CdZnS were synthesized by chemical bath (CBD) with different deposition protocols for optimized the parameter of deposition as the temperature, time of deposition, concentrations of ion and pH. Surface morphology, optical and chemical composition properties of thin film CdZnS were investigated by SEM, EDAX, spectrophotometer. The transmittance is 80% in visible region 300 nm – 1000 nm; it has been observed in that films the grain size is between 50nm and 100nm measured by SEM image and we also note that the shape of particle is changing with the change in concentration. This result favors of application these films in solar cells; the chemical analysis with EDAX gives information about the presence of Cd, Zn and S elements and investigates the stoichiometry.

Keywords: thin film, solar cells, transmition, cdzns

Procedia PDF Downloads 262
1905 Occupational Safety in Construction Projects

Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush

Abstract:

This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.

Keywords: management, safety, occupational safety, classification

Procedia PDF Downloads 106
1904 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
1903 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation

Authors: Oğuzhan Urhan

Abstract:

In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.

Keywords: fast motion estimation; low-complexity motion estimation, video coding

Procedia PDF Downloads 316
1902 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128
1901 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 324
1900 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 406
1899 The Announcer Trainee Satisfaction by National Broadcasting and Telecommunications Commission of Thailand

Authors: Nareenad Panbun

Abstract:

The objective is to study the knowledge utilization from the participants of the announcer training program by National Broadcasting and Telecommunications Commission (NBTC). This study is a quantitative research based on surveys and self-answering questionnaires. The population of this study is 100 participants randomly chosen by non-probability sampling method. The results have shown that most of the participants were satisfied with the topics of general knowledge about the broadcasting and television business for 37 people representing 37%, followed by the topics of broadcasting techniques. The legal issues, consumer rights, television business ethics, and credibility of the media are, in addition to the media's role and responsibilities in society, the use of language for successful communication. Therefore, the communication language skills are the most important for all of the trainees and will also build up the image of the broadcasting center.

Keywords: announcer training program, participant, requirements announced, theory of utilization

Procedia PDF Downloads 222
1898 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
1897 The Effectiveness of Intervention Methods for Repetitive Behaviors in Preschool Children with Autism Spectrum Disorder: A Systematic Review

Authors: Akane Uda, Ami Tabata, Mi An, Misa Komaki, Ryotaro Ito, Mayumi Inoue, Takehiro Sasai, Yusuke Kusano, Toshihiro Kato

Abstract:

Early intervention is recommended for children with autism spectrum disorder (ASD), and an increasing number of children have received support and intervention before school age in recent years. In this study, we systematically reviewed preschool interventions focused on repetitive behaviors observed in children with ASD, which are often observed at younger ages. Inclusion criteria were as follows : (1) Child of preschool status (age ≤ 7 years) with a diagnosis of ASD (including autism, Asperger's, and pervasive developmental disorder) or a parent (caregiver) with a preschool child with ASD, (2) Physician-confirmed diagnosis of ASD (autism, Asperger's, and pervasive developmental disorder), (3) Interventional studies for repetitive behaviors, (4) Original articles published within the past 10 years (2012 or later), (5) Written in English and Japanese. Exclusion criteria were as follows: (1) Systematic reviews or meta-analyses, (2) Conference reports or books. We carefully scrutinized databases to remove duplicate references and used a two-step screening process to select papers. The primary screening included close scrutiny of titles and abstracts to exclude articles that did not meet the eligibility criteria. During the secondary screening, we carefully read the complete text to assess eligibility, which was double-checked by six members at the laboratory. Disagreements were resolved through consensus-based discussion. Our search yielded 304 papers, of which nine were included in the study. The level of evidence was as follows: three randomized controlled trials (level 2), four pre-post studies (level 4b), and two case reports (level 5). Seven articles selected for this study described the effectiveness of interventions. Interventions for repetitive behaviors in preschool children with ASD were categorized as five interventions that directly involved the child and four educational programs for caregivers and parents. Studies that directly intervened with children used early intensive intervention based on applied behavior analysis (Early Start Denver Model, Early Intensive Behavioral Intervention, and the Picture Exchange Communication System) and individualized education based on sensory integration. Educational interventions for caregivers included two methods; (a) education regarding combined methods and practices of applied behavior analysis in addition to classification and coping methods for repetitive behaviors, and (b) education regarding evaluation methods and practices based on children’s developmental milestones in play. With regard to the neurophysiological basis of repetitive behaviors, environmental factors are implicated as possible contributors. We assumed that applied behavior analysis was shown to be effective in reducing repetitive behaviors because analysis focused on the interaction between the individual and the environment. Additionally, with regard to educational interventions for caregivers, the intervention was shown to promote behavioral change in children based on the caregivers' understanding of the classification of repetitive behaviors and the children’s developmental milestones in play and adjustment of the person-environment context led to a reduction in repetitive behaviors.

Keywords: autism spectrum disorder, early intervention, repetitive behaviors, systematic review

Procedia PDF Downloads 140
1896 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids

Authors: Ayalew Yimam Ali

Abstract:

The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.

Procedia PDF Downloads 20
1895 Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios

Authors: Davi Marinho de Araujo Falcão, Ronaldo Moreira Salles, Paulo Henrique Maranhão

Abstract:

Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol.

Keywords: DTN, discriminant function, epidemic protocol, security, tactical messages, warship scenario

Procedia PDF Downloads 191
1894 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 258
1893 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 233
1892 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks

Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua

Abstract:

Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.

Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness

Procedia PDF Downloads 9
1891 Me and My Selfie: Identity Building Through Self Representation in Social Media

Authors: Revytia Tanera

Abstract:

This research is a pilot study to examine the rise of selfie trend in dealing with individual self representation and identity building in social media. The symbolic interactionism theory is used as the concept of the desired self image, and Cooley’s looking glass-self concept is used to analyze the mechanical reflection of ourselves; how do people perform their “digital self” in social media. In-depth interviews were conducted in the study with a non-random sample who owns a smartphone with a front camera feature and are active in social media. This research is trying to find out whether the selfie trend brings any influence on identity building on each individual. Through analysis of interview results, it can be concluded that people take selfie photos in order to express themselves and to boost their confidence. This study suggests a follow up and more in depth analysis on identity and self representation from various age groups.

Keywords: self representation, selfie, social media, symbolic interaction, looking glass-self

Procedia PDF Downloads 297
1890 The Cultural Shift in Pre-owned Fashion as Sustainable Consumerism in Vietnam

Authors: Lam Hong Lan

Abstract:

The textile industry is said to be the second-largest polluter, responsible for 92 million tonnes of waste annually. There is an urgent need to practice the circular economy to increase the use and reuse around the world. By its nature, the pre-owned fashion business is considered part of the circular economy as it helps to eliminate waste and circulate products. Second-hand clothes and accessories used to be associated with a ‘cheap image’ that carried ‘old energy’ in Vietnam. This perception has been shifted, especially amongst the younger generation. Vietnamese consumer is spending more on products and services that increase self-esteem. The same consumer is moving away from a collectivist social identity towards a ‘me, not we’ outlook as they look for a way to express their individual identity. And pre-owned fashion is one of their solutions as it values money, can create a unique personal style for the wearer and links with sustainability. The design of this study is based on the second-hand shopping motivation theory. A semi-structured online survey with 100 consumers from one pre-owned clothing community and one pre-owned e-commerce site in Vietnam. The findings show that in contrast with Vietnamese older consumers (55+yo) who, in the previous study, generally associated pre-owned fashion with ‘low-cost’, ‘cheap image’ that carried ‘old energy’, young customers (20-30 yo) were actively promoted their pre-owned fashion items to the public via outlet’s social platforms and their social media. This cultural shift comes from the impact of global and local discourse around sustainable fashion and the growth of digital platforms in the pre-owned fashion business in the last five years, which has generally supported wider interest in pre-owned fashion in Vietnam. It can be summarised in three areas: (1) global and local celebrity influencers. A number of celebrities have been photographed wearing vintage items in music videos, photoshoots or at red carpet events. (2) E-commerce and intermediaries. International e-commerce sites – e.g., Vinted, TheRealReal – and/or local apps – e.g., Re.Loved – can influence attitudes and behaviors towards pre-owned consumption. (3) Eco-awareness. The increased online coverage of climate change and environmental pollution has encouraged customers to adopt a more eco-friendly approach to their wardrobes. While sustainable biomaterials and designs are still navigating their way into sustainability, sustainable consumerism via pre-owned fashion seems to be an immediate solution to lengthen the clothes lifecycle. This study has found that young consumers are primarily seeking value for money and/or a unique personal style from pre-owned/vintage fashion while using these purchases to promote their own “eco-awareness” via their social media networks. This is a good indication for fashion designers to keep in mind in their design process and for fashion enterprises in their business model’s choice to not overproduce fashion items.

Keywords: cultural shift, pre-owned fashion, sustainable consumption, sustainable fashion.

Procedia PDF Downloads 83