Search results for: failure detection and prediction
5099 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams
Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas
Abstract:
Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.Keywords: steel structures, web-expanded beams, angelina beam, optimum design, failure modes, finite element analysis
Procedia PDF Downloads 2835098 Early Detection of Instability in Emulsions via Diffusing Wave Spectroscopy
Authors: Coline Bretz, Andrea Vaccaro, Dario Leumann
Abstract:
The food, personal care, and cosmetic industries are seeing increased consumer demand for more sustainable and innovative ingredients. When developing new formulations incorporating such ingredients, stability is one of the first criteria that must be assessed, and it is thus of great importance to have a method that can detect instabilities early and quickly. Diffusing Wave Spectroscopy (DWS) is a light scattering technique that probes the motion,i.e., the mean square displacement (MSD), of colloids, such as nanoparticles in a suspension or droplets in emulsions. From the MSD, the rheological properties of the surrounding medium can be determined via the so-called microrheology approach. In the case of purely viscous media, it is also possible to obtain information about particle size. DWS can thus be used to monitor the size evolution of particles, droplets, or bubbles in aging dispersions, emulsions, or foams. In the context of early instability detection in emulsions, DWS offers considerable advantages, as the samples are measured in a contact-free manner, using only small quantities of samples loaded in a sealable cuvette. The sensitivity and rapidity of the technique are key to detecting and following the ageing of emulsions reliably. We present applications of DWS focused on the characterization of emulsions. In particular, we demonstrate the ability to record very subtle changes in the structural properties early on. We also discuss the various mechanisms at play in the destabilization of emulsions, such as coalescence or Ostwald ripening, and how to identify them through this technique.Keywords: instrumentation, emulsions, stability, DWS
Procedia PDF Downloads 695097 Detection of Mustard Traces in Food by an Official Food Safety Laboratory
Authors: Clara Tramuta, Lucia Decastelli, Elisa Barcucci, Sandra Fragassi, Samantha Lupi, Enrico Arletti, Melissa Bizzarri, Daniela Manila Bianchi
Abstract:
Introdution: Food allergies occurs, in the Western World, 2% of adults and up to 8% of children. The protection of allergic consumers is guaranted, in Eurrope, by Regulation (EU) No 1169/2011 of the European Parliament which governs the consumer's right to information and identifies 14 food allergens to be mandatory indicated on the label. Among these, mustard is a popular spice added to enhance the flavour and taste of foods. It is frequently present as an ingredient in spice blends, marinades, salad dressings, sausages, and other products. Hypersensitivity to mustard is a public health problem since the ingestion of even low amounts can trigger severe allergic reactions. In order to protect the allergic consumer, high performance methods are required for the detection of allergenic ingredients. Food safety laboratories rely on validated methods that detect hidden allergens in food to ensure the safety and health of allergic consumers. Here we present the test results for the validation and accreditation of a Real time PCR assay (RT-PCR: SPECIALfinder MC Mustard, Generon), for the detection of mustard traces in food. Materials and Methods. The method was tested on five classes of food matrices: bakery and pastry products (chocolate cookies), meats (ragù), ready-to-eat (mixed salad), dairy products (yogurt), grains, and milling products (rice and barley flour). Blank samples were spiked starting with the mustard samples (Sinapis Alba), lyophilized and stored at -18 °C, at a concentration of 1000 ppm. Serial dilutions were then prepared to a final concentration of 0.5 ppm, using the DNA extracted by ION Force FAST (Generon) from the blank samples. The Real Time PCR reaction was performed by RT-PCR SPECIALfinder MC Mustard (Generon), using CFX96 System (BioRad). Results. Real Time PCR showed a limit of detection (LOD) of 0.5 ppm in grains and milling products, ready-to-eat, meats, bakery, pastry products, and dairy products (range Ct 25-34). To determine the exclusivity parameter of the method, the ragù matrix was contaminated with Prunus dulcis (almonds), peanut (Arachis hypogaea), Glycine max (soy), Apium graveolens (celery), Allium cepa (onion), Pisum sativum (peas), Daucus carota (carrots), and Theobroma cacao (cocoa) and no cross-reactions were observed. Discussion. In terms of sensitivity, the Real Time PCR confirmed, even in complex matrix, a LOD of 0.5 ppm in five classes of food matrices tested; these values are compatible with the current regulatory situation that does not consider, at international level, to establish a quantitative criterion for the allergen considered in this study. The Real Time PCR SPECIALfinder kit for the detection of mustard proved to be easy to use and particularly appreciated for the rapid response times considering that the amplification and detection phase has a duration of less than 50 minutes. Method accuracy was rated satisfactory for sensitivity (100%) and specificity (100%) and was fully validated and accreditated. It was found adequate for the needs of the laboratory as it met the purpose for which it was applied. This study was funded in part within a project of the Italian Ministry of Health (IZS PLV 02/19 RC).Keywords: allergens, food, mustard, real time PCR
Procedia PDF Downloads 1695096 Protection of Steel Bars in Reinforce Concrete with Zinc Based Coverings
Authors: Hamed Rajabzadeh Gatabi, Soroush Dastgheibifard, Mahsa Asnafi
Abstract:
There is no doubt that reinforced concrete is known as one of the most significant materials which is used in construction industry for many years. Although, some natural elements in dealing with environment can contribute to its corrosion or failure. One of which is bar or so-called reinforcement failure. So as to combat this problem, one of the oxidization prevention methods investigated was the barrier protection method implemented over the application of an organic coating, specifically fusion-bonded epoxy. In this study comparative method is prepared on two different kinds of covered bars (zinc-riches epoxy and polyamide epoxy coated bars) and also uncoated bar. With the aim of evaluate these reinforced concretes, the stickiness, toughness, thickness and corrosion performance of coatings were compared by some tools like Cu/CuSo4 electrodes, EIS and etc. Different types of concretes were exposed to the salty environment (NaCl 3.5%) and their durability was measured. As stated by the experiments in research and investigations, thick coatings (named epoxies) have acceptable stickiness and strength. Polyamide epoxy coatings stickiness to the bars was a bit better than that of zinc-rich epoxy coatings; nonetheless it was stiffer than the zinc rich epoxy coatings. Conversely, coated bars with zinc-rich epoxy showed more negative oxidization potentials, which take revenge protection of bars by zinc particles. On the whole, zinc-rich epoxy coverings is more corrosion-proof than polyamide epoxy coatings due to consuming zinc elements and some other parameters, additionally if the epoxy coatings without surface defects are applied on the rebar surface carefully, it can be said that the life of steel structures is subjected to increase dramatically.Keywords: surface coating, epoxy polyamide, reinforce concrete bars, salty environment
Procedia PDF Downloads 2925095 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud
Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal
Abstract:
Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid
Procedia PDF Downloads 3215094 Association between Severe Acidemia before Endotracheal Intubation and the Lower First Attempt Intubation Success Rate
Authors: Keiko Naito, Y. Nakashima, S. Yamauchi, Y. Kunitani, Y. Ishigami, K. Numata, M. Mizobe, Y. Homma, J. Takahashi, T. Inoue, T. Shiga, H. Funakoshi
Abstract:
Background: A presence of severe acidemia, defined as pH < 7.2, is common during endotracheal intubation for critically ill patients in the emergency department (ED). Severe acidemia is widely recognized as a predisposing factor for intubation failure. However, it is unclear that acidemic condition itself actually makes endotracheal intubation more difficult. We aimed to evaluate if a presence of severe acidemia before intubation is associated with the lower first attempt intubation success rate in the ED. Methods: This is a retrospective observational cohort study in the ED of an urban hospital in Japan. The collected data included patient demographics, such as age, sex, and body mass index, presence of one or more factors of modified LEMON criteria for predicting difficult intubation, reasons for intubation, blood gas levels, airway equipment, intubation by emergency physician or not, and the use of the rapid sequence intubation technique. Those with any of the following were excluded from the analysis: (1) no blood gas drawn before intubation, (2) cardiopulmonary arrest, and (3) under 18 years of age. The primary outcome was the first attempt intubation success rates between a severe acidemic patients (SA) group and a non-severe acidemic patients (NA) group. Logistic regression analysis was used to test the first attempt success rates for intubations between those two groups. Results: Over 5 years, a total of 486 intubations were performed; 105 in the SA group and 381 in the NA group. The univariate analysis showed that the first attempt intubation success rate was lower in the SA group than in the NA group (71.4% vs 83.5%, p < 0.01). The multivariate logistic regression analysis identified that severe acidemia was significantly associated with the first attempt intubation failure (OR 1.9, 95% CI 1.03-3.68, p = 0.04). Conclusions: A presence of severe acidemia before endotracheal intubation lowers the first attempt intubation success rate in the ED.Keywords: acidemia, airway management, endotracheal intubation, first-attempt intubation success rate
Procedia PDF Downloads 2515093 Pavement Failures and Its Maintenance
Authors: Maulik L. Sisodia, Tirth K. Raval, Aarsh S. Mistry
Abstract:
This paper summarizes the ongoing researches about the defects in both flexible and rigid pavement and the maintenance in both flexible and rigid pavements. Various defects in pavements have been identified since the existence of both flexible and rigid pavement. Flexible Pavement failure is defined in terms of decreasing serviceability caused by the development of cracks, ruts, potholes etc. Flexible Pavement structure can be destroyed in a single season due to water penetration. Defects in flexible pavements is a problem of multiple dimensions, phenomenal growth of vehicular traffic (in terms of no. of axle loading of commercial vehicles), the rapid expansion in the road network, non-availability of suitable technology, material, equipment, skilled labor and poor funds allocation have all added complexities to the problem of flexible pavements. In rigid pavements due to different type of destress the failure like joint spalling, faulting, shrinkage cracking, punch out, corner break etc. Application of correction in the existing surface will enhance the life of maintenance works as well as that of strengthening layer. Maintenance of a road network involves a variety of operations, i.e., identification of deficiencies and planning, programming and scheduling for actual implementation in the field and monitoring. The essential objective should be to keep the road surface and appurtenances in good condition and to extend the life of the road assets to its design life. The paper describes lessons learnt from pavement failures and problems experienced during the last few years on a number of projects in India. Broadly, the activities include identification of defects and the possible cause there off, determination of appropriate remedial measures; implement these in the field and monitoring of the results.Keywords: Flexible Pavements, Rigid Pavements, Defects, Maintenance
Procedia PDF Downloads 1775092 Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection
Authors: Md. Abdul Aziz
Abstract:
Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide.Keywords: amperometry, chronocoulometry, electrocatalytic properties, ITO-nanoparticle-modified ITO, sulfide sensor
Procedia PDF Downloads 1355091 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1315090 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 3575089 Context Aware Anomaly Behavior Analysis for Smart Home Systems
Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu
Abstract:
The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.Keywords: Internet of Things, network security, context awareness, intrusion detection
Procedia PDF Downloads 1995088 Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size
Authors: Natalie Hoyer
Abstract:
Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings.Keywords: bridge bearings, brittle fracture, fatigue, initial crack size, large-scale tests
Procedia PDF Downloads 495087 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 1565086 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study
Authors: S. P. Pradhan, Amulya Ratna Roul
Abstract:
A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation
Procedia PDF Downloads 1875085 Molecular Study of P53- and Rb-Tumor Suppressor Genes in Human Papilloma Virus-Infected Breast Cancers
Authors: Shakir H. Mohammed Al-Alwany, Saad Hasan M. Ali, Ibrahim Mohammed S. Shnawa
Abstract:
The study was aimed to define the percentage of detection of high-oncogenic risk types of HPV and their genotyping in archival tissue specimens that ranged from apparently healthy tissue to invasive breast cancer by using one of the recent versions of In Situ Hybridization(ISH) 0.2. To find out rational significance of such genotypes as well as over expressed products of mutants P53 and RB genes on the severity of underlying breast cancers. The DNA of HPV was detected in 46.5 % of tissues from breast cancers while HPV DNA in the tissues from benign breast tumours was detected in 12.5%. No HPV positive–ISH reaction was detected in healthy breast tissues of the control group. HPV DNA of genotypes (16, 18, 31 and 33) was detected in malignant group in frequency of 25.6%, 27.1%, 30.2% and 12.4%, respectively. Over expression of p53 was detected by IHC in 51.2% breast cancer cases and in 50% benign breast tumour group, while none of control group showed P53- over expression. Retinoblastoma protein was detected by IHC test in 49.7% of malignant breast tumours, 54.2% of benign breast tumours but no signal was reported in the tissues of control group. The significance prevalence of expression of mutated p53 & Rb genes as well as detection of high-oncogenic HPV genotypes in patients with breast cancer supports the hypothesis of an etiologic role for the virus in breast cancer development.Keywords: human papilloma virus, P53, RB, breast cancer
Procedia PDF Downloads 4835084 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite
Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis
Abstract:
A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid
Procedia PDF Downloads 2175083 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations
Authors: Yanjie Zhu, André Jesus, Irwanda Laory
Abstract:
Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)
Procedia PDF Downloads 3085082 'Coping with Workplace Violence' Workshop: A Commendable Addition to the Curriculum for BA in Nursing
Authors: Ilana Margalith, Adaya Meirowitz, Sigalit Cohavi
Abstract:
Violence against health professionals by patients and their families have recently become a disturbing phenomenon worldwide, exacting psychological as well as economic tolls. Health workplaces in Israel (e.g. hospitals and H.M.O clinics) provide workshops for their employees, supplying them with coping strategies. However, these workshops do not focus on nursing students, who are also subjected to this violence. Their learning environment is no longer as protective as it used to be. Furthermore, coping with violence was not part of the curriculum for Israeli nursing students. Thus, based on human aggression theories which depict the pivotal role of the professional's correct response in preventing the onset of an aggressive response or the escalation of violence, a workshop was developed for undergraduate nursing students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel. The workshop aimed at reducing students' anxiety vis a vis the aggressive patient or family in addition to strengthening their ability to cope with such situations. The students practiced interpersonal skills, especially relevant to early detection of potential violence, as well as ‘a correct response’ reaction to the violence, thus developing the necessary steps to be implemented when encountering violence in the workplace. In order to assess the efficiency of the workshop, the participants filled out a questionnaire comprising knowledge and self-efficacy scales. Moreover, the replies of the 23 participants in this workshop were compared with those of 24 students who attended a standard course on interpersonal communication. Students' self-efficacy and knowledge were measured in both groups before and after the course. A statistically significant interaction was found between group (workshop/standard course) and time (before/after) as to the influence on students' self-efficacy (p=0.004) and knowledge (p=0.007). Nursing students, who participated in this ‘coping with workplace violence’ workshop, gained knowledge, confidence and a sense of self-efficacy with regard to workplace violence. Early detection of signs of imminent violence amongst patients or families and the prevention of its escalation, as well as the ability to manage the threatening situation when occurring, are acquired skills. Encouraging nursing students to learn and practice these skills may enhance their ability to cope with these unfortunate occurrences.Keywords: early detection of violence, nursing students, patient aggression, self-efficacy, workplace violence
Procedia PDF Downloads 1405081 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 905080 Influencing Factors and Mechanism of Patient Engagement in Healthcare: A Survey in China
Authors: Qing Wu, Xuchun Ye, Kirsten Corazzini
Abstract:
Objective: It is increasingly recognized that patients’ rational and meaningful engagement in healthcare could make important contributions to their health care and safety management. However, recent evidence indicated that patients' actual roles in healthcare didn’t match their desired roles, and many patients reported a less active role than desired, which suggested that patient engagement in healthcare may be influenced by various factors. This study aimed to analyze influencing factors on patient engagement and explore the influence mechanism, which will be expected to contribute to the strategy development of patient engagement in healthcare. Methods: On the basis of analyzing the literature and theory study, the research framework was developed. According to the research framework, a cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale, Facilitation of Patient Involvement Scale and Wake Forest Physician Trust Scale, and other influencing factor related scales. A convenience sample of 580 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province, and Zhejiang Province. Results: The results of the cross-sectional survey indicated that the mean score for the patient engagement behavior was (4.146 ± 0.496), and the mean score for the willingness was (4.387 ± 0.459). The level of patient engagement behavior was inferior to their willingness to be involved in healthcare (t = 14.928, P < 0.01). The influencing mechanism model of patient engagement in healthcare was constructed by the path analysis. The path analysis revealed that patient attitude toward engagement, patients’ perception of facilitation of patient engagement and health literacy played direct prediction on the patients’ willingness of engagement, and standard estimated values of path coefficient were 0.341, 0.199, 0.291, respectively. Patients’ trust in physician and the willingness of engagement played direct prediction on the patient engagement, and standard estimated values of path coefficient were 0.211, 0.641, respectively. Patient attitude toward engagement, patients’ perception of facilitation and health literacy played indirect prediction on patient engagement, and standard estimated values of path coefficient were 0.219, 0.128, 0.187, respectively. Conclusions: Patients engagement behavior did not match their willingness to be involved in healthcare. The influencing mechanism model of patient engagement in healthcare was constructed. Patient attitude toward engagement, patients’ perception of facilitation of engagement and health literacy posed indirect positive influence on patient engagement through the patients’ willingness of engagement. Patients’ trust in physician and the willingness of engagement had direct positive influence on the patient engagement. Patient attitude toward engagement, patients’ perception of physician facilitation of engagement and health literacy were the factors influencing the patients’ willingness of engagement. The results of this study provided valuable evidence on guiding the development of strategies for promoting patient rational and meaningful engagement in healthcare.Keywords: healthcare, patient engagement, influencing factor, the mechanism
Procedia PDF Downloads 1575079 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections
Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández
Abstract:
Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control
Procedia PDF Downloads 265078 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model
Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge
Abstract:
Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model
Procedia PDF Downloads 1355077 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1055076 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials
Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié
Abstract:
Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.Keywords: bio-based materials, mould growth, numerical prediction, reliability approach
Procedia PDF Downloads 535075 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks
Authors: Alaa Allakany, Koji Okamura
Abstract:
Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).Keywords: multicast tree, software define networks, tabu search, OpenFlow
Procedia PDF Downloads 2665074 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 1515073 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum
Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu
Abstract:
Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101
Procedia PDF Downloads 555072 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads
Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom
Abstract:
Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete
Procedia PDF Downloads 2595071 Application of Geosynthetics for the Recovery of Located Road on Geological Failure
Authors: Rideci Farias, Haroldo Paranhos
Abstract:
The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure
Procedia PDF Downloads 1735070 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 121