Search results for: measurements metrics
795 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 63794 Dielectric Response Analysis Measurement for Diagnostic Oil-Paper Insulation System on Aged Inter Bus Transformer 3x10 MVA
Authors: Eki Farlen, Akas
Abstract:
Condition assessment of oil-paper-insulated power transformers, particularly of water content, is becoming increasingly important for aged transformers. As insulation ages, it can produce water, which reduces its dielectric strength, accelerates the cellulose ageing process, and causes gas bubbles to form at high temperatures. This paper mainly assesses the life condition of oil-paper insulation system of Inter Bus Transformer (IBT) 30 MVA, 150/30 kV in PT PLN-Substation Jelok that has been operating for 41 years, since 1974. Valuable information about the condition of high voltage insulation may be obtained by measuring its dielectric response. This paper describes in detail the interpretation of Dielectric Response Analysis (DIRANA) measurements and the test result compared to other insulation tests to get deep information for diagnostic, such as Tan delta test, oil characteristic test and Dissolve Gas Analysis (DGA) test. This paper mainly discusses the parameter relationship between moisture content, water content, acidity, oil conductivity and dissipation factor. The result and analysis show that IBT 30 MVA Jelok phase U and W had just been ageing due to high acidity level (>0.2 mgKOH/g) which cause high moisture in cellulose/paper (%) are in wet category about 4.7% and 5% and water content in oil (ppm) about 3.13 ppm and 3.33 ppm at temperature 20°C. High acidity level can make oxidation process and produce water in paper and particle which can decrease the value of Interfacial Tension (IFT) below 22 mN/m (poor category) for both phase U and W. Even if paper insulation of transformer are in wet condition, dissipation factor and capacitance at the same frequency (50 Hz) from both measurement DIRANA test and Tangent delta test give the same result (almost), the results are 0.69% and 0.71% (<1%), it may be acceptable and should not be investigated. The DGA results show that TDCG are in level one (1) condition and there are no found a Key Gases, it means that transformers had no failure during operation like arching, partial discharge and thermal in oil or cellulose.Keywords: diagnostic, inter-bus transformer, oil-paper insulation, moisture, dissipation factor
Procedia PDF Downloads 278793 Zinc Nanoparticles Modified Electrode as an Insulin Sensor
Authors: Radka Gorejova, Ivana Sisolakova, Jana Shepa, Frederika Chovancova, Renata Orinakova
Abstract:
Diabetes mellitus (DM) is a serious metabolic disease characterized by chronic hyperglycemia. Often, the symptoms are not sufficiently observable at early stages, and so hyperglycemia causes pathological and functional changes before the diagnosis of the DM. Therefore, the development of an electrochemical sensor that will be fast, accurate, and instrumentally undemanding is currently needful. Screen-printed carbon electrodes (SPCEs) can be considered as the most suitable matrix material for insulin sensors because of the small size of the working electrode. It leads to the analyst's volume reduction to only 50 µl for each measurement. The surface of bare SPCE was modified by a combination of chitosan, multi-walled carbon nanotubes (MWCNTs), and zinc nanoparticles (ZnNPs) to obtain better electrocatalytic activity towards insulin oxidation. ZnNPs were electrochemically deposited on the chitosan-MWCNTs/SPCE surface using the pulse deposition method. Thereafter, insulin was determined on the prepared electrode using chronoamperometry and electrochemical impedance spectroscopy (EIS). The chronoamperometric measurement was performed by adding a constant amount of insulin in 0.1 M NaOH and PBS (2 μl) with the concentration of 2 μM, and the current response of the system was monitored after a gradual increase in concentration. Subsequently, the limit of detection (LOD) of the prepared electrode was determined via the Randles-Ševčík equation. The LOD was 0.47 µM. Prepared electrodes were studied also as the impedimetric sensors for insulin determination. Therefore, various insulin concentrations were determined via EIS. Based on the performed measurements, the ZnNPs/chitosan-MWCNTs/SPCE can be considered as a potential candidate for novel electrochemical sensor for insulin determination. Acknowledgments: This work has been supported by the projects Visegradfund project number 22020140, VEGA 1/0095/21 of the Slovak Scientific Grant Agency, and APVV-PP-COVID-20-0036 of the Slovak Research and Development Agency.Keywords: zinc nanoparticles, insulin, chronoamperometry, electrochemical impedance spectroscopy
Procedia PDF Downloads 121792 LHCII Proteins Phosphorylation Changes Involved in the Dark-Chilling Response in Plant Species with Different Chilling Tolerance
Authors: Malgorzata Krysiak, Anna Wegrzyn, Maciej Garstka, Radoslaw Mazur
Abstract:
Under constantly fluctuating environmental conditions, the thylakoid membrane protein network evolved the ability to dynamically respond to changing biotic and abiotic factors. One of the most important protective mechanism is rearrangement of the chlorophyll-protein (CP) complexes, induced by protein phosphorylation. In a temperate climate, low temperature is one of the abiotic stresses that heavily affect plant growth and productivity. The aim of this study was to determine the role of LHCII antenna complex phosphorylation in the dark-chilling response. The study included an experimental model based on dark-chilling at 4 °C of detached chilling sensitive (CS) runner bean (Phaseolus coccineus L.) and chilling tolerant (CT) garden pea (Pisum sativum L.) leaves. This model is well described in the literature as used for the analysis of chilling impact without any additional effects caused by light. We examined changes in thylakoid membrane protein phosphorylation, interactions between phosphorylated LHCII (P-LHCII) and CP complexes, and their impact on the dynamics of photosystem II (PSII) under dark-chilling conditions. Our results showed that the dark-chilling treatment of CS bean leaves induced a substantial increase of phosphorylation of LHCII proteins, as well as changes in CP complexes composition and their interaction with P-LHCII. The PSII photochemical efficiency measurements showed that in bean, PSII is overloaded with light energy, which is not compensated by CP complexes rearrangements. On the contrary, no significant changes in PSII photochemical efficiency, phosphorylation pattern and CP complexes interactions were observed in CT pea. In conclusion, our results indicate that different responses of the LHCII phosphorylation to chilling stress take place in CT and CS plants, and that kinetics of LHCII phosphorylation and interactions of P-LHCII with photosynthetic complexes may be crucial to chilling stress response. Acknowledgments: presented work was financed by the National Science Centre, Poland grant No.: 2016/23/D/NZ3/01276Keywords: LHCII, phosphorylation, chilling stress, pea, runner bean
Procedia PDF Downloads 138791 Numerical Simulation of Convective and Transport Processes in the Nocturnal Atmospheric Surface Layer
Authors: K. R. Sreenivas, Shaurya Kaushal
Abstract:
After sunset, under calm & clear-sky nocturnal conditions, the air layer near the surface containing aerosols cools through radiative processes to the upper atmosphere. Due to this cooling, surface air-layer temperature can fall 2-6 degrees C lower than the ground-surface temperature. This unstable convection layer, on the top, is capped by a stable inversion-boundary layer. Radiative divergence, along with the convection within the surface layer, governs the vertical transport of heat and moisture. Micro-physics in this layer have implications for the occurrence and growth of the fog layer. This particular configuration, featuring a convective mixed layer beneath a stably stratified inversion layer, exemplifies a classic case of penetrative convection. In this study, we conduct numerical simulations of the penetrative convection phenomenon within the nocturnal atmospheric surface layer and elucidate its relevance to the dynamics of fog layers. We employ field and laboratory measurements of aerosol number density to model the strength of the radiative cooling. Our analysis encompasses horizontally averaged, vertical profiles of temperature, density, and heat flux. The energetic incursion of the air from the mixed layer into the stable inversion layer across the interface results in entrainment and the growth of the mixed layer, modeling of which is the key focus of our investigation. In our research, we ascertain the appropriate length scale to employ in the Richardson number correlation, which allows us to estimate the entrainment rate and model the growth of the mixed layer. Our analysis of the mixed layer and the entrainment zone reveals a close alignment with previously reported laboratory experiments on penetrative convection. Additionally, we demonstrate how aerosol number density influences the growth or decay of the mixed layer. Furthermore, our study suggests that the presence of fog near the ground surface can induce extensive vertical mixing, a phenomenon observed in field experiments.Keywords: inversion layer, penetrative convection, radiative cooling, fog occurrence
Procedia PDF Downloads 68790 A Plant-Insect Association for Enhancing Survival of an Ecosystem Engineer Termite Species in a Semi-Arid Savanna
Abstract:
Mutualistic relationships amongst organisms drive diversity in terrestrial ecosystems. Yet, few mutual associations have been documented in the semi-arid savannas of Africa. The levels and benefits of association between Carissa bispinosa, a medium-sized evergreen thorny shrub, and Trinervitermes trinervoides, an ecosystem engineer termite species, were studied at a semi-arid savanna setting in Nylsvley nature reserve, South Africa. It was hypothesized that there would be a close plant-insect association since termite mounds provide nutrients for plant growth and, in return, the thorny shrubs protect mounds from predation and also provide a temperature buffer. Comparative plant and mounds measurements were taken from associated and isolated occurrences seasonally. Soil particle size, macro- and micronutrients were also evaluated from mounds and the adjacent topsoil matrix General Additive Mixed Models were used to assess internal mound temperatures in relation to prevailing ambient and plant shade temperatures. Findings revealed that plants growing on mounds were significantly taller with a wider canopy and remained greener in the dry season with more fruits. On the other hand, termite mounds under plants were less prone to be damaged by aardvarks and pangolins and had a significantly wider diameter than exposed mounds. All soil macronutrients except for calcium and phosphorous were enriched in mounds relative to the matrix. Only Manganese was enriched in mounds while the other micronutrients (Cu, Fe, Zn and B) were not. Termite mounds under plants maintained a better constant and higher mean internal temperature during winter compared to exposed mounds. To our best knowledge, the study has revealed a previously undocumented survival mechanism that termites use to escape extreme temperatures and predation in semi-arid savannas.Keywords: mound, mutualism, soil nutrients, termites, thermoregulation
Procedia PDF Downloads 123789 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: current track velocities, gymea bay, surface sediments, trace elements
Procedia PDF Downloads 244788 Impact of Gamma Irradiation on Biological Activities of Artemisia herba alba from Algeria
Authors: Abir Mohamed Mohamed Ibrahim, Amina Titouche, Mohamed Hazzit
Abstract:
Phytotherapy is based on use of plant natural products holding the main sources of drugs with healing properties for the treatment of human, animal or vegetable diseases. With these aims, and to replace chemical preservatives in natural products, we are interested to use essential oils from Algerian endemic plants belonging to the Asteraceae family: Artemisia herba alba Asso, which was undergoes a hydro-distillation after its irradiation by Gamma rays at frequencies: 10, 20, and 30 KGray which gave respectively the following essential oil yields: 1.087%, 1.087%, 1.085%, compared with that of the untreated sample giving a yield of 1.27 %. Evaluation of the antioxidant activity in vitro of essential oil for A. herba alba has been assessed by two different methods: inhibition of DPPH radical and measurement of reducing power. The first method has not revealed a very big difference regardless of the dose of irradiation, the IC50 is about 4000 mg/l, the maximum of inhibition was around 49.4%, likewise, the test of reducing power awarded us a maximum reducing capacity was of 0.76%; both of results were registered by the specimen irradiated at 20 KGy, it has a more better antioxidant power than no irradiated sample but slightly. To combat Fusarium culmorum, causing the wilts and rots, we are focused on the antifungal screening of this aromatic plant. The results obtained, followed by measurements of Minimal Inhibitory Concentrations (MIC); showed promising inhibitory effect against pathogen tested. With a yield superior to l%, the essential oil has shown a remarkable efficiency on the stump, mainly for sample irradiate at 30KGray (MICs= 625 µg/ml; MICc= 1250 µg/ml) with MIC of 2%. These results demonstrate a good antifungal activity, to limit and even to stop the development of the pathogenic microorganism and also the positive effect of dose of irradiation to upgrade this capacity as well, to uphold the antioxidant capacity.Keywords: artemisia herba alba Asso, essential oil yield, gamma ray, antioxidant activity, antifungal activity
Procedia PDF Downloads 518787 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology
Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez
Abstract:
Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.Keywords: appropriate technology, enveloping, energy efficiency, passive cooling
Procedia PDF Downloads 91786 Principal Component Analysis of Body Weight and Morphometric Traits of New Zealand Rabbits Raised under Semi-Arid Condition in Nigeria
Authors: Emmanuel Abayomi Rotimi
Abstract:
Context: Rabbits production plays important role in increasing animal protein supply in Nigeria. Rabbit production provides a cheap, affordable, and healthy source of meat. The growth of animals involves an increase in body weight, which can change the conformation of various parts of the body. Live weight and linear measurements are indicators of growth rate in rabbits and other farm animals. Aims: This study aimed to define the body dimensions of New Zealand rabbits and also to investigate the morphometric traits variables that contribute to body conformation by the use of principal component analysis (PCA). Methods: Data were obtained from 80 New Zealand rabbits (40 bucks and 40 does) raised in Livestock Teaching and Research Farm, Federal University Dutsinma. Data were taken on body weight (BWT), body length (BL), ear length (EL), tail length (TL), heart girth (HG) and abdominal circumference (AC). Data collected were subjected to multivariate analysis using SPSS 20.0 statistical package. Key results: The descriptive statistics showed that the mean BWT, BL, EL, TL, HG, and AC were 0.91kg, 27.34cm, 10.24cm, 8.35cm, 19.55cm and 21.30cm respectively. Sex showed significant (P<0.05) effect on all the variables examined, with higher values recorded for does. The phenotypic correlation coefficient values (r) between the morphometric traits were all positive and ranged from r = 0.406 (between EL and BL) to r = 0.909 (between AC and HG). HG is the most correlated with BWT (r = 0.786). The principal component analysis with variance maximizing orthogonal rotation was used to extract the components. Two principal components (PCs) from the factor analysis of morphometric traits explained about 80.42% of the total variance. PC1 accounted for 64.46% while PC2 accounted for 15.97% of the total variances. Three variables, representing body conformation, loaded highest in PC1. PC1 had the highest contribution (64.46%) to the total variance, and it is regarded as body conformation traits. Conclusions: This component could be used as selection criteria for improving body weight of rabbits.Keywords: conformation, multicollinearity, multivariate, rabbits and principal component analysis
Procedia PDF Downloads 128785 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 6784 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan
Authors: Yu-Wen Huang, Yi-Cheng Chiang
Abstract:
With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)
Procedia PDF Downloads 308783 Yield and Sward Composition Responses of Natural Grasslands to Treatments Meeting Sustainability
Authors: D. Díaz Fernández, I. Csízi, K. Pető, G. Nagy
Abstract:
An outstanding part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be managed, the grassland based animal husbandry can be an efficient way of food production. In addition, these ecosystems have an important role in carbon sequestration, and with their rich flora – and fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but, looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. Three rates of compost (10 t/ha, 20 t/ha, 30 t/ha) were tested on 3 m X 10 m experimental plots. Every treatment had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots, measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield of pasture showed positive responses to the rates of composts. The increase in dry matter yield was partly due to some positive changes in sward composition. It means that the proportions of grass species with higher yield potential increased in ground cover of the sward without depressing out valuable native species of diverse natural grasslands. The research results indicate that the use of organic compost can be an efficient way to increase grass yields in a sustainable way.Keywords: compost application, dry matter yield, native grassland, sward composition
Procedia PDF Downloads 248782 Research on Design Methods for Riverside Spaces of Deep-cut Rivers in Mountainous Cities: A Case Study of Qingshuixi River in Chongqing City
Authors: Luojie Tang
Abstract:
Riverside space is an important public space and ecological corridor in urban areas, but mountainous urban rivers are often overlooked due to their deep valleys and poor accessibility. This article takes the Qing Shui Xi River in Chongqing as an example, and through long-term field inspections, measurements, interviews, and online surveys, summarizes the problems of poor accessibility, limited space for renovation, lack of waterfront facilities, excessive artificial intervention, low average runoff, severe river water pollution, and difficulty in integrated watershed management in riverside space. Based on the current situation and drawing on relevant experiences, this article summarizes the design methods for riverside space in deep valley rivers in mountainous urban areas. Regarding spatial design techniques, the article emphasizes the importance of integrating waterfront spaces into the urban public space system and vertical linkages. Furthermore, the article suggests different design methods and improvement strategies for the already developed areas and new development areas. Specifically, the article proposes a planning and design strategy of "protection" and "empowerment" for new development areas and an updating and transformation strategy of "improvement" and "revitalization" for already developed areas. In terms of ecological restoration methods, the article suggests three focus points: increasing the runoff of urban rivers, raising the landscape water level during dry seasons, and restoring vegetation and wetlands in the riverbank buffer zone while protecting the overall pattern of the watershed. Additionally, the article presents specific design details of the Qingshuixi River to illustrate the proposed design and restoration techniques.Keywords: deep-cut river, design method, mountainous city, Qingshuixi river in Chongqing, waterfront space design
Procedia PDF Downloads 108781 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 75780 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces
Authors: Aditya Kumar
Abstract:
One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 294779 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 219778 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring
Authors: Toshitaka Higashino, Naoki Wakamiya
Abstract:
Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.Keywords: brain activity, EEG, information processing model, model human processor
Procedia PDF Downloads 96777 Comparative Analysis of Benzene, Toluene, Ethylbenzene, and Xylene Concentrations at Roadside and Urban Background Sites in Leicester and Lagos Using Thermal Desorption-Gas Chromatography-Mass Spectrometry
Authors: Emmanuel Bernard, Rebecca L. Cordell, Akeem A. Abayomi, Rose Alani, Paul S. Monks
Abstract:
This study investigates the prevalence and extent of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) contamination in Leicester, United Kingdom, and Lagos, Nigeria, through field measurements at roadside (RS) and urban background (UB) sites. Using thermal desorption gas chromatography mass spectrometry (TD-GC-MS), BTEX concentrations were quantified. In Leicester, the average RS concentration was 24.9 ± 8.9 μg/m³, and the UB concentration was 12.7 ± 5.7 μg/m³. In Lagos, the RS concentration was significantly higher at 106 ± 39.3 μg/m³, and the UB concentration was 20.1 ± 8.9 μg/m³. The RS concentration in Lagos was approximately 4.3 times higher than in Leicester, while the UB concentration was about 1.6 times higher. These disparities are attributed to differences in road infrastructure, traffic regulation compliance, fuel and oil quality, and local activities. In Leicester, the highest UB concentration (20.5 ± 1.7 μg/m³) was at Knighton Village, near the heavily polluted RS Wigston roundabout. In Lagos, the highest concentration (172.1 ± 12.2 μg/m³) was at Ojuelegba, a major transportation hub. Correlation analysis revealed strong positive relationships between the concentrations of BTEX compounds in both cities, suggesting common sources such as vehicular emissions and industrial activities. The ratios of toluene to benzene (T:B) and m/p xylene to ethylbenzene (m/p X:E) were analysed to infer source contributions and the photochemical age of air masses. The T:B ratio in Leicester ranged from 0.44 to 0.71, while in Lagos, it ranged from 1.36 to 2.17. The m/p X:E ratio in Leicester ranged from 2.11 to 2.19, like other UK cities, while in Lagos, it ranged from 1.65 to 2.32, indicating relatively fresh emissions. This study highlights significant differences in BTEX concentrations between Leicester and Lagos, emphasizing the need for tailored pollution control strategies to address the specific sources and conditions in different urban environments.Keywords: BTEX contamination, urban air quality, thermal desorption GC-MS, roadside emissions, urban background sites, vehicular emissions, pollution control strategies
Procedia PDF Downloads 45776 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality
Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar
Abstract:
The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.Keywords: humic acids, natural organic matter, zeta potential, soil quality
Procedia PDF Downloads 248775 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.
Authors: Madhalasa Iyer
Abstract:
The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast
Procedia PDF Downloads 107774 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye
Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi
Abstract:
The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma
Procedia PDF Downloads 191773 Understanding Responses of the Bee Community to an Urbanizing Landscape in Bengaluru, South India
Authors: Chethana V. Casiker, Jagadishakumara B., Sunil G. M., Chaithra K., M. Soubadra Devy
Abstract:
A majority of the world’s food crops depends on insects for pollination, among which bees are the most dominant taxon. Bees pollinate vegetables, fruits and oilseeds which are rich in essential micronutrients. Besides being a prerequisite for a nutritionally secure diet, agrarian economies such as India depend heavily on pollination for good yield and quality of the product. As cities all over the world expand rapidly, large tracts of green spaces are being built up. This, along with high usage of agricultural chemicals has reduced floral diversity and shrunk bee habitats. Indeed, pollinator decline is being reported from various parts of the world. Further, the FAO has reported a huge increase in the area of land under cultivation of pollinator-dependent crops. In the light of increasing demand for pollination and disappearing natural habitats, it is critical to understand whether and how urban spaces can support pollinators. To this end, this study investigates the influence of landscape and local habitat quality on bee community dynamics. To capture the dynamics of expanding cityscapes, the study employs a space for time substitution, wherein a transect along the gradient of urbanization substitutes a timeframe of increasing urbanization. This will help understand how pollinators would respond to changes induced by increasing intensity of urbanization in the future. Bengaluru, one of the fastest growing cities of Southern India, is an excellent site to study impacts associated with urbanization. With sites moving away from the Bengaluru’s centre and towards its peripheries, this study captures the changes in bee species diversity and richness along a gradient of urbanization. Bees were sampled under different land use types as well as in different types of vegetation, including plantations, croplands, fallow land, parks, lake embankments, and private gardens. The relationship between bee community metrics and key drivers such as a percentage of built-up area, land use practices, and floral resources was examined. Additionally, data collected using questionnaire interviews were used to understand people’s perceptions towards and level of dependence on pollinators. Our results showed that urban areas are capable of supporting bees. In fact, a greater diversity of bees was recorded in urban sites compared to adjoining rural areas. This suggests that bees are able to seek out patchy resources and survive in small fragments of habitat. Bee abundance and species richness correlated positively with floral abundance and richness, indicating the role of vegetation in providing forage and nesting sites which are crucial to their survival. Bee numbers were seen to decrease with increase in built-up area demonstrating that impervious surfaces could act as deterrents. Findings from this study challenge the popular notion of cities being biodiversity-bare spaces. There is indeed scope for conserving bees in urban landscapes, provided that there are city-scale planning and local initiative. Bee conservation can go hand in hand with efforts such as urban gardening and terrace farming that could help cities urbanize sustainably.Keywords: bee, landscape ecology, urbanization, urban pollination
Procedia PDF Downloads 166772 Ambient Electrospray Deposition: An Efficient Technique to Immobilize Laccase on Cheap Electrodes With Unprecedented Reuse and Storage Performances
Authors: Mattea Carmen Castrovilli, Antonella Cartoni
Abstract:
Electrospray ionisation (ESI), a well-established technique widely used to produce ion beams of biomolecules in mass spectrometry (ESI-MS), can be used for ambient soft landing of enzymes on a specific substrate. In this work, we show how the ambient electrospray deposition (ESD) technique can be successfully exploited for manufacturing a promising, green-friendly electrochemical amperometric laccase-based biosensor with unprecedented reuse and storage performance. These biosensors have been manufactured by spraying a laccase solution of 2μg/μL at 20% of methanol on a commercial carbon screen printed electrode (C-SPE) using a custom ESD set-up. The laccase-based ESD biosensor has been tested against catechol compounds in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from cadmium, chrome, arsenic, and zinc and without any memory effects, but showing a matrix effect in lake and well water. The ESD biosensor shows enhanced performances compared to the ones fabricated with other immobilization methods, like drop-casting. Indeed, it retains 100% activity up to two months of storage at ambient conditions without any special care and working stability up to 63 measurements on the same electrode just prepared and 20 on a one-year-old electrode subjected to redeposition together with a 100% resistance to use of the same electrode in subsequent days. The ESD method is a one-step, environmentally friendly method that allows the deposition of the bio-recognition layer without using any additional chemicals. The promising results in terms of storage and working stability also obtained with the more fragile lactate oxidase enzyme suggest these improvements should be attributed to the ESD technique rather than to the bioreceptor, highlighting how the ESD could be useful in reducing pollution from disposable devices. Acknowledgment: The understanding at the molecular level of this promising biosensor by using different spectroscopies, microscopies and analytical techniques is the subject of our PRIN 2022 project ESILARANTE.Keywords: reuse, storage performance, immobilization, electrospray deposition, biosensor, laccase, catechol detection, green chemistry
Procedia PDF Downloads 60771 Book Exchange System with a Hybrid Recommendation Engine
Authors: Nilki Upathissa, Torin Wirasinghe
Abstract:
This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network
Procedia PDF Downloads 92770 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study
Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh
Abstract:
Ammonium nitrate (NH₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension
Procedia PDF Downloads 230769 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept
Authors: Ahmed El Naggar, Homyan Saleh
Abstract:
Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy
Procedia PDF Downloads 90768 Development of an Atmospheric Radioxenon Detection System for Nuclear Explosion Monitoring
Authors: V. Thomas, O. Delaune, W. Hennig, S. Hoover
Abstract:
Measurement of radioactive isotopes of atmospheric xenon is used to detect, locate and identify any confined nuclear tests as part of the Comprehensive Nuclear Test-Ban Treaty (CTBT). In this context, the Alternative Energies and French Atomic Energy Commission (CEA) has developed a fixed device to continuously measure the concentration of these fission products, the SPALAX process. During its atmospheric transport, the radioactive xenon will undergo a significant dilution between the source point and the measurement station. Regarding the distance between fixed stations located all over the globe, the typical volume activities measured are near 1 mBq m⁻³. To avoid the constraints induced by atmospheric dilution, the development of a mobile detection system is in progress; this system will allow on-site measurements in order to confirm or infringe a suspicious measurement detected by a fixed station. Furthermore, this system will use beta/gamma coincidence measurement technique in order to drastically reduce environmental background (which masks such activities). The detector prototype consists of a gas cell surrounded by two large silicon wafers, coupled with two square NaI(Tl) detectors. The gas cell has a sample volume of 30 cm³ and the silicon wafers are 500 µm thick with an active surface area of 3600 mm². In order to minimize leakage current, each wafer has been segmented into four independent silicon pixels. This cell is sandwiched between two low background NaI(Tl) detectors (70x70x40 mm³ crystal). The expected Minimal Detectable Concentration (MDC) for each radio-xenon is in the order of 1-10 mBq m⁻³. Three 4-channels digital acquisition modules (Pixie-NET) are used to process all the signals. Time synchronization is ensured by a dedicated PTP-network, using the IEEE 1588 Precision Time Protocol. We would like to present this system from its simulation to the laboratory tests.Keywords: beta/gamma coincidence technique, low level measurement, radioxenon, silicon pixels
Procedia PDF Downloads 124767 Stable Isotope Ratios Data for Tracing the Origin of Greek Olive Oils and Table Olives
Authors: Efthimios Kokkotos, Kostakis Marios, Beis Alexandros, Angelos Patakas, Antonios Avgeris, Vassilios Triantafyllidis
Abstract:
H, C, and O stable isotope ratios were measured in different olive oils and table olives originating from different regions of Greece. In particular, the stable isotope ratios of different olive oils produced in the Lakonia region (Peloponesse – South Greece) from different varieties, i.e., cvs ‘Athinolia’ and ‘koroneiki’, were determined. Additionally, stable isotope ratios were also measured in different table olives (cvs ‘koroneiki’ and ‘kalamon’) produced in the same region (Messinia). The aim of this study was to provide sufficient isotope ratio data regarding each variety and region of origin that could be used in discriminative studies of oil olives and table olives produced by different varieties in other regions. In total, 97 samples of olive oil (cv ‘Athinolia’ and ‘koroneiki’) and 67 samples of table olives (cvs ‘kalmon’ and ‘koroneiki’) collected during two consecutive sampling periods (2021-2022 and 2022-2023) were measured. The C, H, and O isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS), and the results obtained were analyzed using chemometric techniques. The measurements of the isotope ratio analyses were expressed in permille (‰) using the delta δ notation (δ=Rsample/Rstandard-1, where Rsample and Rstandardis represent the isotope ratio of sample and standard). Results indicate that stable isotope ratios of C, H, and O ranged between -28,5+0,45‰, -142,83+2,82‰, 25,86+0,56‰ and -29,78+0,71‰, -143,62+1,4‰, 26,32+0,55‰ in olive oils produced in Lakonia region from ‘Athinolia’ and ‘koroneiki ‘varieties, respectively. The C, H, and O values from table olives originated from Messinia region were -28,58+0,63‰, -138,09+3,27‰, 25,45+0,62‰ and -29,41+0,59‰,-137,67+1,15‰, 24,37+0,6‰ for ‘Kalamon’ and ‘koroneiki’ olives respectively. Acknowledgments: This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE (Project code: T2EDK-02637; MIS 5075094, Title: ‘Innovative Methodological Tools for Traceability, Certification and Authenticity Assessment of Olive Oil and Olives’).Keywords: olive oil, table olives, Isotope ratio, IRMS, geographical origin
Procedia PDF Downloads 54766 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz
Abstract:
Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification
Procedia PDF Downloads 361