Search results for: interval training
2100 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 692099 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 802098 The Effects of Aging on Visuomotor Behaviors in Reaching
Authors: Mengjiao Fan, Thomson W. L. Wong
Abstract:
It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration
Procedia PDF Downloads 3122097 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 1262096 The Impact of Step-By-Step Program in the Public Preschool Institutions in Kosova
Authors: Rozafa Shala
Abstract:
Development of preschool education in Kosovo has passed through several periods. The period after the 1999 war was very intensive period when preschool education started to change. Step-by-step program was one of the programs which were very well extended during the period after the 1999 war until now. The aim of this study is to present the impact of the step-by-step program in the preschool education. This research is based on the hypothesis that: Step-by-step program continues to be present with its elements, in all other programs that the teachers can use. For data collection a questionnaire is constructed which was distributed to 25 teachers of preschool education who work in public preschool institutions. All the teachers have finished the training for step by step program. To support the data from the questionnaire a focus group is also organized with whom the critical issues of the program were discussed. From the results obtained we can conclude that the step-by-step program has a very strong impact in the preschool level. Many specific elements such as: circle time, weather calendar, environment inside the class, portfolios and many other elements are present in most of the preschool classes. The teacher's approach also has many elements of the step-by-step program.Keywords: preschool education, step-by-step program, impact, teachers
Procedia PDF Downloads 3502095 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 802094 Factors That Stimulate Employee Development in Polish Small Enterprises
Authors: Ewa Rak
Abstract:
This paper is part of a broader research project on employee development in small enterprises, financed by Polish National Science Centre. The project results will serve as basis for a doctoral dissertation. The paper utilises literature studies and qualitative research conducted in small enterprises operating in the Lower Silesia region of Poland. This paper aims to identify some of the factors that stimulate employee development in small companies operating in Poland. The great variety of business pursuits and applications represented by this sector makes it hard to determine a universal configuration of factors to offer best possible conditions for employee development. Research results suggest that each of the examined companies had one or two of such factors in focus, and serving as the basis for the entire pro-development system. These include: employment security (both for employee and entrepreneur) and extensive knowledge and experience of entrepreneurs, but only if it is combined with a willingness and ability to share it.Keywords: employee development, factors that stimulate employee development, human resources development, Poland, small enterprises, training
Procedia PDF Downloads 2682093 Systolic Blood Pressure Responses to Aerobic Exercise among HIV Positive Patients
Authors: Ka'abu Mu'azu
Abstract:
The study examines the effect of varied intensities of aerobic exercise on Systolic Blood Pressure (SBP) among HIV/AIDS positive patients. Participants of mean age of 20.4 years were randomized into four groups. High Intensity Group (HIG), Moderate Intensity Group (MIG), Low Intensity Group (LIG) and Control Group (COG). SBP was measured at baseline (pre-exercise) and post-exercise (8 weeks). Analysis of variance (ANOVA) indicates a significant training effect on resting values of SBP (F [3, 15] = 8.9, P < 0.05). Sheffe post hoc analysis indicated that both HIG and MIG significantly differ from control (P < 0.05). Dependent t- test indicates difference in HIG (t [7] = 6.5, P < 0.05) and slightly in MIG (t [7] = 5.4, P < 0.05). The study concluded that aerobic exercise is effective in reducing resting values of SBP particularly the activities that are high intensity in nature. The study recommends that high and moderate intensity aerobic exercise should be used for improving health condition of HIV/AIDS patients as regard to decrease in resting value of SBP.Keywords: systolic blood pressure, aerobic exercise, HIV patients, health sciences
Procedia PDF Downloads 3792092 Evaluation of Inceptor Design for Manned Multicopter
Authors: Jędrzej Minda
Abstract:
In aviation, a very narrow spectrum of control inceptors exists, namely centre sticks, side-sticks, pedals, and yokes. However, new types of aircraft are emerging, and with them, a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper, a unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions, and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of the pilot-inceptor model were performed in order to compare the dynamic amplification factors of the design described in this paper with the classical one. A functional prototype is built on which drone pilots carry out a comfort-of-use evaluation. This paper provides a general overview of the project, including a literature review, reasoning behind components selection, and mechanism design finalized by conclusions.Keywords: mechanisms, mechatronics, embedded control, serious gaming for training rescue missions, rescue robotics
Procedia PDF Downloads 822091 An Empirical Analysis of HRM in Different Pharmaceutical Departments of Different Pharmaceutical Industries in Pakistan
Authors: Faisal Ali, Mansoor Shuakat, Cui Lirong, Rabia Riasat
Abstract:
HR is a department that enhances the power of employee performance in regard with their services, and to make the organization strategic objectives. The main concern of HR department is to organize people, focus on policies and their system. The empirical study shows the relationship between HRM (Human Resource Management practices) and their Job Satisfaction. The Hypothesis is testing on a sample of overall 320 employees of 5 different Pharmaceutical departments of different organizations in Pakistan. The important thing as Relationship of Job satisfaction with HR Practices, Impact on Job Satisfaction with HR Practices, Participation of Staff of Different Departments, HR Practices effects the Job satisfaction, Recruitment or Hiring and Selection effects the Job satisfaction, Training and Development, Performance and Appraisals, Compensation affects the Job satisfaction , and Industrial Relationships affects the Job satisfaction. After finishing all data analysis, the conclusion is that lots of Job related activities raise the confidence of Job satisfaction of employees with their salary and other benefits. Implications of HR practices discussed, Limitations, and future research study also offered write the main conclusion for your paper.Keywords: HRM, HR practices, job satisfaction, TQM
Procedia PDF Downloads 3682090 Compromising Quality of Life in Low Income Settlement's: The Case of Ashrayan Prakalpa, Khulna
Authors: Salma Akter, Md. Kamal Uddin
Abstract:
This study aims to demonstrate how top-down shelter policy and its resultant dwelling environment leads to ‘everyday compromise’ by the grassroots according to subjective (satisfaction) and objective (physical design elements and physical environmental elements) indicators, which are measured across three levels of the settlement; macro (Community), meso (Neighborhood or shelter/built environment) and micro (family). Ashrayan Prakalpa is a resettlement /housing project of Government of Bangladesh for providing shelters and human resources development activities like education, microcredit, and training programme to landless, homeless and rootless people. Despite the integrated nature of the shelter policies (comprises poverty alleviation, employment opportunity, secured tenure, and livelihood training), the ‘quality of life’ issue at the different levels of settlements becomes questionable. As dwellers of shelter units (although formally termed as ‘barracks’ rather shelter or housing) remain on the receiving end of government’s resettlement policies, they often involve with spatial-physical and socio-economic negotiation and assume curious forms of spatial practice, which often upholds contradiction with policy planning. Thus, policy based shelter force dwellers to persistently compromise with their provided built environments both in overtly and covertly. Compromising with prescribed designed space and facilities across living places articulated their negotiation with the quality of allocated space, built form and infrastructures, which in turn exert as less quality of life. The top-down shelter project, Dakshin Chandani Mahal Ashrayan Prakalpa at Dighalia Upazila, the study area located at the Eastern fringe area of Khulna, Bangladesh, is still in progress to resettle internally displaced and homeless people. In terms of methodology, this research is primarily exploratory and adopts a case study method, and an analytical framework is developed through the deductive approach for evaluating the quality of life. Secondary data have been obtained from housing policy analysis and relevant literature review, while key informant interview, focus group discussion, necessary drawings and photographs and participant observation across dwelling, neighborhood, and community level have also been administered as primary data collection methodology. Findings have revealed that various shortages, inadequacies, and negligence of policymakers force to compromise with allocated designed space, physical infrastructure and economic opportunities across dwelling, neighborhood and mostly community level. Thus, the outcome of this study can be beneficial for a global-level understating of the compromising the ‘quality of life’ under top-down shelter policy. Locally, for instance, in the context of Bangladesh, it can help policymakers and concerned authorities to formulate the shelter policies and take initiatives to improve the well-being of marginalized.Keywords: Ashrayan Prakalpa, compromise, displaced people, quality of life
Procedia PDF Downloads 1512089 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 392088 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.Keywords: factors, Kendall's coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables
Procedia PDF Downloads 6272087 Factors Affecting the Climate Change Adaptation in Agriculture in Central and Western Nepal
Authors: Maharjan Shree Kumar
Abstract:
Climate change impacts are observed in all livelihood sectors primarily in agriculture and forestry. Multiple factors have influenced the climate vulnerabilities and adaptations in agricultural at the household level. This study focused on the factors affecting adaptation in agriculture in Madi and Deukhuri valleys of Central and Western Nepal. The systematic random sampling technique was applied to select 154 households in Madi and 150 households in Deukhuri. The main purpose of the study was to analyze the socio-economic factors that either influence or restrain the farmers’ adaptation to climate change at the household level by applying the linear probability model. Based on the analysis, it is revealed that crop diversity, education, training and total land holding (acre) were positively significant for adaptation choices the study sites. Rest of the variables were not significant though indicated positive as expected except age, occupation, ethnicity, family size, and access to credit.Keywords: adaptation, agriculture, climate, factors, Nepal
Procedia PDF Downloads 1522086 Organizational Socialization Levels in Nurses
Authors: Manar Aslan, Ayfer Karaaslan, Serap Selçuk
Abstract:
The research was conducted in order to determine the organizational socialization levels of nurses working in hospitals in the form of a descriptive study. The research population was composed of nurses employed in public and private sector hospitals in the province of Konya with 0-3 years of professional experience in the hospitals (N=1200); and the sample was composed of 495 nurses that accepted to take part in the study voluntarily. Organizational Socialization Scale which was developed by Haueter, Macan and Winter (2003) and whose validity-reliability in Turkish was analyzed by Ataman (2012) was used. Statistical evaluation of data was conducted in SPSS.16 software. The results of the study revealed that the total score taken by nurses at the organizational socialization scale was 262.95; and this was close to the maximum score. Particularly the departmental socialization sub-dimension proved to be higher in comparison to the other two dimensions (organization socialization and task socialization). Statistically meaningful differences were found in the levels of organization socialization in relation to the status of organizational orientation training, level of education and age group.Keywords: nurses, newcomers, organizational socialization, total score
Procedia PDF Downloads 3492085 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition
Authors: Li Zhang, Yuehong Su
Abstract:
Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.Keywords: neural network, bended lightpipe, transmittance, Photopia
Procedia PDF Downloads 1522084 An Investigation into Kenyan Teachers’ Views of Children’s Emotional and Behavioural Difficulties
Authors: Fred Mageto
Abstract:
A great number of children in mainstream schools across Kenya are currently living with emotional, behavioural difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioural difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Kenya find classroom behaviour problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioural difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.Keywords: teachers, children, learning, emotional and behaviour difficulties
Procedia PDF Downloads 1632083 Factors Associated with Death during Tuberculosis Treatment of Patients Co-Infected with HIV at a Tertiary Care Setting in Cameroon: An 8-Year Hospital-Based Retrospective Cohort Study (2006-2013)
Authors: A. A. Agbor, Jean Joel R. Bigna, Serges Clotaire Billong, Mathurin Cyrille Tejiokem, Gabriel L. Ekali, Claudia S. Plottel, Jean Jacques N. Noubiap, Hortence Abessolo, Roselyne Toby, Sinata Koulla-Shiro
Abstract:
Background: Contributors to fatal outcomes in patients undergoing tuberculosis (TB) treatment in the setting of HIV co-infection are poorly characterized, especially in sub-Saharan Africa. Our study’s aim was to assess factors associated with death in TB/HIV co-infected patients during the first 6 months their TB treatment. Methods: We conducted a tertiary-care hospital-based retrospective cohort study from January 2006 to December 2013 at the Yaoundé Central Hospital, Cameroon. We reviewed medical records to identify hospitalized co-infected TB/HIV patients aged 15 years and older. Death was defined as any death occurring during TB treatment, as per the World Health Organization’s recommendations. Logistic regression analysis identified factors associated with death. Magnitudes of associations were expressed by adjusted odds ratio (aOR) with 95% confidence interval. A p value < 0.05 was considered statistically significant. Results: The 337 patients enrolled had a mean age of 39.3 (+/- 10.3) years and more (54.3%) were women. TB treatment outcomes included: treatment success in 60.8% (n=205), death in 29.4% (n=99), not evaluated in 5.3% (n=18), loss to follow-up in 5.3% (n=14), and failure in 0.3% (n=1) . After exclusion of patients lost to follow-up and not evaluated, death in TB/HIV co-infected patients during TB treatment was associated with: a TB diagnosis made before national implementation of guidelines regarding initiation of antiretroviral therapy (aOR = 2.50 [1.31-4.78]; p = 0.006), the presence of other AIDS-defining infections (aOR = 2.73 [1.27-5.86]; p = 0.010), non-AIDS comorbidities (aOR = 3.35 [1.37-8.21]; p = 0.008), not receiving co-trimoxazole prophylaxis (aOR = 3.61 [1.71-7.63]; p = 0.001), not receiving antiretroviral therapy (aOR = 2.45 [1.18-5.08]; p = 0.016), and CD4 cell counts < 50 cells/mm3 (aOR = 16.43 [1.05-258.04]; p = 0.047). Conclusions: The success rate of anti-tuberculosis treatment among hospitalized TB/HIV co-infected patients in our setting is low. Mortality in the first 6 months of treatment was high and strongly associated with specific clinical factors including states of greater immunosuppression, highlighting the urgent need for targeted interventions, including provision of anti-retroviral therapy and co-trimoxazole prophylaxis in order to enhance patient outcomes.Keywords: TB/HIV co-infection, death, treatment outcomes, factors
Procedia PDF Downloads 4462082 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 1432081 Elitism: Navigating Professional Diversity Barriers
Authors: Rachel Nir, Tina Mckee
Abstract:
In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies
Procedia PDF Downloads 2372080 Effect of Preoperative Single Dose Dexamethasone and Lignocaine on Post-Operative Quality of Recovery and Pain Relief after Laparoscopic Cholecystectomy
Authors: Gurjeet Khurana, Surender Singh, Poonam Arora, Praveendra K. Sachan
Abstract:
Introduction: Post-operative quality of recovery is the key outcome in the perspective of anesthesiologist. It is directly related to patient satisfaction. This is unsurprising, considering most aspects of a poor quality recovery after surgery will impair satisfaction with care. This study was thus undertaken to evaluate effects of Dexamethasone and Lignocaine on Quality of Recovery using QoR- 40 questionnaire and compare their effects. Material and methods: After obtaining the ethical committee approval and written informed consent, 67 patients of 18-60 years, ASA grade I and II scheduled for elective laparoscopic cholecystectomy were randomly allocated into two groups. Group I of 34 patients received 2mg/kg lignocaine diluted to 10ml with normal saline. Group 2 of 33 patients received 0.1 mg/kg I/V Dexamethasone diluted to 10ml with normal saline. QoR-40 was assessed on pre-operative day, and again QoR-40 was assessed at 24 hr post-operative day-1. Postoperative pain scores, nausea and vomiting and shoulder pain were secondary outcomes. Results: The Global QoR-40 was more than 180 at 24 hr in both the groups. The Dexamethasone group had higher Global QoR-40 than lignocaine group 187.94 v/s 182.85. Amongst dimensions of QoR-40 Dexamethasone had statistically better physical comfort, physical independence, and pain relief as compared to Lignocaine. Positive items had excellent responses in Dexamethasone group. Headache, backache and sore throat were also less severe in Dexamethasone group as compared to Lignocaine group. Dexamethasone group had lower VAS compared to lignocaine group. Similarly, there was less fentanyl consumption in dexamethasone group (364.08 ± 127.31) in postoperative period when compared to the lignocaine group (412.31 ± 147.8). Group receiving dexamethasone had 36% increase in appetite compared to lignocaine group (17.6%), which facilitated early oral feeding. Frequency of PONV was less in group-2 at different time interval as compared to group 1. Total episode of PONV were 18 in group 1 and 7 in group 2. Statistically significant difference was seen among two groups (p value= 0.007). Use of antiemetic was more in group 1 as compared to group 2 at all the times, though it was not statistically significant at different time intervals. Antiemetics were administered to 18 patients in group 1 as compared to 5 patients in group 2 postoperatively. Statistically significant difference (p value= 0.011) was seen in total antiemetic consumption. Conclusion: Our study demonstrated that pre-operative administration of a single dose of dexamethasone enhanced the quality of recovery after laparoscopic cholecystectomy as compared to Lignocaine bolus dose.Keywords: dexamethasone, lignocaine, QoR-40 questionnaire, quality of recovery
Procedia PDF Downloads 1222079 Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images
Authors: Isa Muhammad Zumo, Musa Lawan
Abstract:
This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005.Keywords: land use, changes, analysis, environmental pollution
Procedia PDF Downloads 3472078 Foggy Image Restoration Using Neural Network
Authors: Khader S. Al-Aidmat, Venus W. Samawi
Abstract:
Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration
Procedia PDF Downloads 3822077 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3822076 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders
Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob
Abstract:
Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.Keywords: ASD, social skills, cognitive training, mobile app
Procedia PDF Downloads 2132075 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 3722074 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice
Authors: T. Ewetumo, K. D. Adedayo, Festus Ben
Abstract:
Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation
Procedia PDF Downloads 3572073 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation
Authors: Sandra Mendes
Abstract:
Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.Keywords: field theory, knowledge, science, social work
Procedia PDF Downloads 3552072 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities
Authors: Omran Alharbi, Victor Lally
Abstract:
The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.Keywords: LMS, factors, KSA, teachers
Procedia PDF Downloads 1292071 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 162