Search results for: functions of two variables
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6557

Search results for: functions of two variables

3947 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production

Authors: Mahmoud Karimi, Golmohammad Khoobbakht

Abstract:

This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.

Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil

Procedia PDF Downloads 194
3946 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory

Procedia PDF Downloads 284
3945 Naphtha Catalytic Reform: Modeling and Simulation of Unity

Authors: Leal Leonardo, Pires Carlos Augusto de Moraes, Casiraghi Magela

Abstract:

In this work were realized the modeling and simulation of the catalytic reformer process, of ample form, considering all the equipment that influence the operation performance. Considered it a semi-regenerative reformer, with four reactors in series intercalated with four furnaces, two heat exchanges, one product separator and one recycle compressor. A simplified reactional system was considered, involving only ten chemical compounds related through five reactions. The considered process was the applied to aromatics production (benzene, toluene, and xylene). The models developed to diverse equipment were interconnecting in a simulator that consists of a computer program elaborate in FORTRAN 77. The simulation of the global model representative of reformer unity achieved results that are compatibles with the literature ones. It was then possible to study the effects of operational variables in the products concentration and in the performance of the unity equipment.

Keywords: catalytic reforming, modeling, simulation, petrochemical engineering

Procedia PDF Downloads 516
3944 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis

Procedia PDF Downloads 485
3943 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 140
3942 Implementation of Cord- Blood Derived Stem Cells in the Regeneration of Two Experimental Models: Carbon Tetrachloride and S. Mansoni Induced Liver Fibrosis

Authors: Manal M. Kame, Zeinab A. Demerdash, Hanan G. El-Baz, Salwa M. Hassan, Faten M. Salah, Wafaa Mansour, Olfat Hammam

Abstract:

Cord blood (CB) derived Unrestricted Somatic Stem Cells (USSCs) with their multipotentiality hold great promise in liver regeneration. This work aims at evaluation of the therapeutic potentiality of USSCs in two experimental models of chronic liver injury induced either by S. mansoni infection in balb/c mice or CCL4 injection in hamsters. Isolation, propagation, and characterization of USSCs from CB samples were performed. USSCs were induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. Cells of the third passage were transplanted in two models of liver fibrosis: (1) Twenty hamsters were induced to liver fibrosis by repeated i. p. injection of 100 μl CCl4 /hamster for 8 weeks. This model was designed as; 10 hamsters with liver fibrosis and treated with i.h. injection of 3x106 USSCs (USSCs transplanted group), 10 hamsters with liver fibrosis (pathological control group), and 10 hamsters with healthy livers (normal control group). (2) Murine chronics S.mansoni model: twenty mice were induced to liver fibrosis with S. mansoni ceracariae (60 cercariae/ mouse) using the tail immersion method and left for 12 weeks. This model was designed as; 10 mice with liver fibrosis were transplanted with i. v. injection of 1×106 USCCs (USSCs transplanted group). Other 2 groups were designed as in hamsters model. Animals were sacrificed 12 weeks after USSCs transplantation, and their liver sections were examined for detection of human hepatocyte-like cells by immunohistochemistry staining. Moreover, liver sections were examined for fibrosis level, and fibrotic indices were calculated. Sera of sacrificed animals were tested for liver functions. CB USSCs, with fibroblast-like morphology, expressed high levels of CD44, CD90, CD73 and CD105 and were negative for CD34, CD45, and HLA-DR. USSCs showed high expression of transcripts for Oct4 and Sox2 and were in vitro differentiated into osteoblasts, adipocytes. In both animal models, in vitro induced hepatocyte-like cells were confirmed by cytoplasmic expression of glycogen, alpha-fetoprotein, and cytokeratin18. Livers of USSCs transplanted group showed engraftment with human hepatocyte-like cells as proved by cytoplasmic expression of human alpha-fetoprotein, cytokeratin18, and OV6. In addition, livers of this group showed less fibrosis than the pathological control group. Liver functions in the form of serum AST & ALT level and serum total bilirubin level were significantly lowered in USSCs transplanted group than pathological control group (p < 0.001). Moreover, the fibrotic index was significantly lower (p< 0.001) in USSCs transplanted group than pathological control group. In addition liver sections, of i. v. injection of 1×106 USCCs of mice, stained with either H&E or sirius red showed diminished granuloma size and a relative decrease in hepatic fibrosis. Our experimental liver fibrosis models transplanted with CB-USSCs showed liver engraftment with human hepatocyte-like cells as well as signs of liver regeneration in the form of improvement in liver function assays and fibrosis level. These data provide hope that human CB- derived USSCs are introduced as multipotent stem cells with great potentiality in regenerative medicine & strengthens the concept of cellular therapy for the treatment of liver fibrosis.

Keywords: cord blood, liver fibrosis, stem cells, transplantation

Procedia PDF Downloads 309
3941 Numerical Study of UV Irradiation Effect on Air Disinfection Systems

Authors: H. Shokouhmand, M. Degheh, B. Sajadi, H. Sobhani

Abstract:

The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper.

Keywords: CFD, microorganism, two-phase flow, ultraviolet germicidal irradiation

Procedia PDF Downloads 329
3940 Enhancing Transfer Path Analysis with In-Situ Component Transfer Path Analysis for Interface Forces Identification

Authors: Raef Cherif, Houssine Bakkali, Wafaa El Khatiri, Yacine Yaddaden

Abstract:

The analysis of how vibrations are transmitted between components is required in many engineering applications. Transfer path analysis (TPA) has been a valuable engineering tool for solving Noise, Vibration, and Harshness (NVH problems using sub-structuring applications. The most challenging part of a TPA analysis is estimating the equivalent forces at the contact points between the active and the passive side. Component TPA in situ Method calculates these forces by inverting the frequency response functions (FRFs) measured at the passive subsystem, relating the motion at indicator points to forces at the interface. However, matrix inversion could pose problems due to the ill-conditioning of the matrices leading to inaccurate results. This paper establishes a TPA model for an academic system consisting of two plates linked by four springs. A numerical study has been performed to improve the interface forces identification. Several parameters are studied and discussed, such as the singular value rejection and the number and position of indicator points chosen and used in the inversion matrix.

Keywords: transfer path analysis, matrix inverse method, indicator points, SVD decomposition

Procedia PDF Downloads 85
3939 The Fiscal-Monetary Policy and Economic Growth in Algeria: VECM Approach

Authors: K. Bokreta, D. Benanaya

Abstract:

The objective of this study is to examine the relative effectiveness of monetary and fiscal policy in Algeria using the econometric modelling techniques of cointegration and vector error correction modelling to analyse and draw policy inferences. The chosen variables of fiscal policy are government expenditure and net taxes on products, while the effect of monetary policy is presented by the inflation rate and the official exchange rate. From the results, we find that in the long-run, the impact of government expenditures is positive, while the effect of taxes is negative on growth. Additionally, we find that the inflation rate is found to have little effect on GDP per capita but the impact of the exchange rate is insignificant. We conclude that fiscal policy is more powerful then monetary policy in promoting economic growth in Algeria.

Keywords: economic growth, monetary policy, fiscal policy, VECM

Procedia PDF Downloads 310
3938 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 147
3937 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo

Abstract:

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Keywords: training, rehabilitation, SCI patient, welfare, robot

Procedia PDF Downloads 428
3936 The Factors to Determine the Content About Gender and Sexuality Education Among Adolescents in China

Authors: Yixiao Tang

Abstract:

The risks of adolescents being exposed to sexually transmitted diseases (STDs) and participating in unsafe sexual practices are increasing. There is the necessity and significance of providing adolescents with appropriate sex education, considering they are at the stage of life exploration and risk-taking. However, in delivering sex education, the contents and instruction methods are usually discussed with contextual differences. In the Chinese context, the socially prejudiced perceptions of homosexuality can be attributed to the traditional Chinese Confucian philosophy, which has been dominating Chinese education for thousands of years. In China, students rarely receive adequate information about HIV, STDs, the use of contraceptives, pregnancies, and other sexually related topics in their formal education. Underlying the Confucian cultural background, this essay will analyze the variables that determine the subject matter of sex education for adolescents and then discuss how this cultural form affects social views and policy on sex education.

Keywords: homosexuality education, adolescent, China, education policy

Procedia PDF Downloads 76
3935 A Strategy for the Application of Second-Order Monte Carlo Algorithms to Petroleum Exploration and Production Projects

Authors: Obioma Uche

Abstract:

Due to the recent volatility in oil & gas prices as well as increased development of non-conventional resources, it has become even more essential to critically evaluate the profitability of petroleum prospects prior to making any investment decisions. Traditionally, simple Monte Carlo (MC) algorithms have been used to randomly sample probability distributions of economic and geological factors (e.g. price, OPEX, CAPEX, reserves, productive life, etc.) in order to obtain probability distributions for profitability metrics such as Net Present Value (NPV). In recent years, second-order MC algorithms have been shown to offer an advantage over simple MC techniques due to the added consideration of uncertainties associated with the probability distributions of the relevant variables. Here, a strategy for the application of the second-order MC technique to a case study is demonstrated to analyze its effectiveness as a tool for portfolio management.

Keywords: Monte Carlo algorithms, portfolio management, profitability, risk analysis

Procedia PDF Downloads 335
3934 Agent-Base Modeling of IoT Applications by Using Software Product Line

Authors: Asad Abbas, Muhammad Fezan Afzal, Muhammad Latif Anjum, Muhammad Azmat

Abstract:

The Internet of Things (IoT) is used to link up real objects that use the internet to interact. IoT applications allow handling and operating the equipment in accordance with environmental needs, such as transportation and healthcare. IoT devices are linked together via a number of agents that act as a middleman for communications. The operation of a heat sensor differs indoors and outside because agent applications work with environmental variables. In this article, we suggest using Software Product Line (SPL) to model IoT agents and applications' features on an XML-based basis. The contextual diversity within the same domain of application can be handled, and the reusability of features is increased by XML-based feature modelling. For the purpose of managing contextual variability, we have embraced XML for modelling IoT applications, agents, and internet-connected devices.

Keywords: IoT agents, IoT applications, software product line, feature model, XML

Procedia PDF Downloads 94
3933 Parental Rejection and Psychological Adjustment among Adolescents: Does the Peer Rejection Mediate?

Authors: Sultan Shujja, Farah Malik

Abstract:

The study examined the mediating role of peer rejection in direct relationship of parental rejection and psychological adjustment among adolescents. Researchers used self-report measures e.g., Parental Acceptance-Rejection Questionnaire (PARQ), Children Rejection Sensitivity Questionnaire (PARQ), and Personality Assessment Questionnaire (PAQ) to assess perception of parent-peer rejection, psychological adjustment among adolescents (14-18 years). Findings revealed that peer rejection did not mediate the parental rejection and psychological adjustment whereas parental rejection emerged as strong predictor when demographic variables were statistically controlled. On average, girls were psychologically less adjusted than that of boys. Despite of equal perception of peer rejection, girls more anxiously anticipated peer rejection than did the boys. It is suggested that peer influence on adolescents, specifically girls, should not be underestimated.

Keywords: peer relationships, parental perception, psychological adjustment, applied psychology

Procedia PDF Downloads 512
3932 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups

Authors: John Hardy

Abstract:

Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.

Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism

Procedia PDF Downloads 291
3931 Use of Oral Communication Strategies: A Study of Bangladeshi EFL Learners at the Graduate Level

Authors: Afroza Akhter Tina

Abstract:

This paper reports on an investigation into the use of specific types of oral communication strategies, namely ‘topic avoidance’, ‘message abandonment’, ‘code-switching’, ‘paraphrasing’, ‘restructuring’, and ‘stalling’ by Bangladeshi EFL learners at the graduate level. It chiefly considers the frequency of using these strategies as well as the students and teachers attitudes toward such uses. The participants of this study are 66 EFL students and 12 EFL teachers of Jahangirnagar University. Data was collected through questionnaire, oral interview, and classroom observation form. The findings reveal that the EFL students tried to employ all the strategies to various extents due to the language difficulties they encountered in their oral English performance. Among them, the mostly used strategy was ‘stalling’ or the use of fillers, followed by ‘code-switching’. The least used strategies were ‘topic avoidance’, ‘restructuring’, and ‘paraphrasing’. The findings indicate that the use of such strategies was related to the contexts of situation and data-elicitation tasks. It also reveals that the students were not formally trained to use the strategies though the majority of the teachers and students acknowledge them as helpful in communication. Finally the study suggests that an awareness of the nature and functions of these strategies can contribute to the overall improvement of the learners’ communicative competence in spoken English.

Keywords: communicative strategies, competency, attitude, frequency

Procedia PDF Downloads 408
3930 Relationship of Workplace Stress and Mental Wellbeing among Health Professionals

Authors: Rabia Mushtaq, Uroosa Javaid

Abstract:

It has been observed that health professionals are at higher danger of stress in light of the fact that being a specialist is physically and emotionally demanding. The study aimed to investigate the relationship between workplace stress and mental wellbeing among health professionals. Sample of 120 male and female health professionals belonging to two age groups, i.e., early adulthood and middle adulthood, was employed through purposive sampling technique. Job stress scale, mindful attention awareness scale, and Warwick Edinburgh mental wellbeing scales were used for the measurement of study variables. Results of the study indicated that job stress has a significant negative relationship with mental wellbeing among health professionals. The current study opened the door for more exploratory work on mindfulness among health professionals. Yielding outcomes helped in consolidating adapting procedures among workers to improve their mental wellbeing and lessen the job stress.

Keywords: health professionals, job stress, mental wellbeing, mindfulness

Procedia PDF Downloads 175
3929 Corporate Governance in Africa: A Review of Literature

Authors: Kisanga Arsene

Abstract:

The abundant literature on corporate governance identifies four main objectives: the configuration of power within firms, control, conflict prevention and the equitable distribution of value created. The persistent dysfunctions in companies in developing countries in general and in African countries, in particular, show that these objectives are generally not achieved, which supports the idea of analyzing corporate governance practices in Africa. Indeed, the objective of this paper is to review the literature on corporate governance in Africa, to outline the specific practices and challenges of corporate governance in Africa and to identify reliable indicators and variables to capture corporate governance in Africa. In light of the existing literature, we argue that corporate governance in Africa can only be studied in the light of African realities and by taking into account the institutional environment. These studies show the existence of a divide between governance practices and the legislative and regulatory texts in force in the African context.

Keywords: institutional environment, transparency, accountability, Africa

Procedia PDF Downloads 177
3928 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
3927 Palliative Care Referral Behavior Among Nurse Practitioners in Hospital Medicine

Authors: Sharon Jackson White

Abstract:

Purpose: Nurse practitioners (NPs) practicing within hospital medicine play a significant role in caring for patients who might benefit from palliative care (PC) services. Using the Theory of Planned Behavior, the purpose of this study was to examine the relationships among facilitators to referral, barriers to referral, self-efficacy with end-of-life discussions, history of referral, and referring to PC among NPs in hospital medicine. Hypotheses: 1) Perceived facilitators to referral will be associated with a higher history of referral and a higher number of referrals to PC. 2) Perceived barriers to referral will be associated with a lower history of referral and a lower number of referrals to PC. 3) Increased self-efficacy with end-of-life discussions will be associated with a higher history of referral and a higher number of referrals to PC. 4) Perceived facilitators to referral, perceived barriers to referral, and self–efficacy with end-of-life discussions will contribute to a significant variance in the history of referral to PC. 5) Perceived facilitators to referral, perceived barriers to referral, and self–efficacy with end-of-life discussions will contribute to a significant variance in the number of referrals to PC. Significance: Previous studies of referring patients to PC within the hospital setting care have focused on physician practices. Identifying factors that influence NPs referring hospitalized patients to PC is essential to ensure that patients have access to these important services. This study incorporates the SNRS mission of advancing nursing research through the dissemination of research findings and the promotion of nursing science. Methods: A cross-sectional, predictive correlational study was conducted. History of referral to PC, facilitators to referring to PC, barriers to referring to PC, self-efficacy in end-of-life discussions, and referral to PC were measured using the PC referral case study survey, facilitators and barriers to PC referral survey, and self-assessment with end-of-life discussions survey. Data were analyzed descriptively and with Pearson’s Correlation, Spearman’s Rho, point-biserial correlation, multiple regression, logistic regression, Chi-Square test, and the Mann-Whitney U test. Results: Only one facilitator (PC team being helpful with establishing goals of care) was significantly associated with referral to PC. Three variables were statistically significant in relation to the history of referring to PC: “Inclined to refer: PC can help decrease the length of stay in hospital”, “Most inclined to refer: Patients with serious illnesses and/or poor prognoses”, and “Giving bad news to a patient or family member”. No predictor variables contributed a significant variance in the number of referrals to PC for all three case studies. There were no statistically significant results showing a relationship between the history of referral and referral to PC. All five hypotheses were partially supported. Discussion: Findings from this study emphasize the need for further research on NPs who work in hospital settings and what factors influence their behaviors of referring to PC. Since there is an increase in NPs practicing within hospital settings, future studies should use a larger sample size and incorporate hospital medicine NPs and other types of NPs that work in hospitals.

Keywords: palliative care, nurse practitioners, hospital medicine, referral

Procedia PDF Downloads 73
3926 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System

Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian

Abstract:

In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.

Keywords: dispatching, solar ingot, simulation, flexsim

Procedia PDF Downloads 301
3925 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market

Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani

Abstract:

In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial ‎results.

Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)

Procedia PDF Downloads 359
3924 The Food and Nutritional Effects of Smallholders’ Participation in Milk Value Chain in Ethiopia

Authors: Geday Elias, Montaigne Etienne, Padilla Martine, Tollossa Degefa

Abstract:

Smallholder farmers’ participation in agricultural value chain identified as a pathway to get out of poverty trap in Ethiopia. The smallholder dairy activities have a huge potential in poverty reduction through enhancing income, achieving food and nutritional security in the country. However, much less is known about the effects of smallholder’s participation in milk value chain on household food security and nutrition. This paper therefore, aims at evaluating the effects of smallholders’ participation in milk value chain on household food security taking in to account the four pillars of food security measurements (availability, access, utilization and stability). Using a semi-structured interview, a cross sectional farm household data collected from a randomly selected sample of 333 households (170 in Amhara and 163 in Oromia regions).Binary logit and propensity score matching( PSM) models are employed to examine the mechanisms through which smallholder’s participation in the milk value chain affects household food security where crop production, per capita calorie intakes, diet diversity score, and food insecurity access scale are used to measure food availability, access, utilization and stability respectively. Our findings reveal from 333 households, only 34.5% of smallholder farmers are participated in the milk value chain. Limited access to inputs and services, limited access to inputs markets and high transaction costs are key constraints for smallholders’ limited access to the milk value chain. To estimate the true average participation effects of milk value chain for participated households, the outcome variables (food security) of farm households who participated in milk value chain are compared with the outcome variables if the farm households had not participated. The PSM analysis reveals smallholder’s participation in milk value chain has a significant positive effect on household income, food security and nutrition. Smallholder farmers who are participated in milk chain are better by 15 quintals crops production and 73 percent of per capita calorie intakes in food availability and access respectively than smallholder farmers who are not participated in the market. Similarly, the participated households are better in dietary quality by 112 percents than non-participated households. Finally, smallholders’ who are participated in milk value chain are better in reducing household vulnerability to food insecurity by an average of 130 percent than non participated households. The results also shows income earned from milk value chain participation contributed to reduce capital’s constraints of the participated households’ by higher farm income and total household income by 5164 ETB and 14265 ETB respectively. This study therefore, confirms the potential role of smallholders’ participation in food value chain to get out of poverty trap through improving rural household income, food security and nutrition. Therefore, identified the determinants of smallholder participation in milk value chain and the participation effects on food security in the study areas are worth considering as a positive knock for policymakers and development agents to tackle the poverty trap in the study area in particular and in the country in general.

Keywords: effects, food security and nutrition, milk, participation, smallholders, value chain

Procedia PDF Downloads 340
3923 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 119
3922 Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water

Authors: Megha, Diksha, Seema Rani, Balwinder Kaur, Harminder Kaur

Abstract:

Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines.

Keywords: magnetic nanoparticles, heavy metal ions, electrochemical sensor, environmental water samples

Procedia PDF Downloads 79
3921 Deciphering Chinese Calligraphy as the Architectural Essence of Tao Fong Shan Christian Center in Hong Kong

Authors: Chak Kwong Lau

Abstract:

Many buildings in Hong Kong are graced with enchanting works of Chinese calligraphy. An excellent example is Tao Fong Shan Christian Center founded by a Norwegian missionary, Karl Ludvig Reichelt (1877-1952) in 1930. Adorned with many inspiring works of Chinese calligraphy, the center functions as a place for the study of Christianity where people of different religions can meet to have religious discussions and intellectual exchanges. This paper examines the pivotal role played by Chinese calligraphy in creating a significant context for the center to fulfill her visions and missions. The methodology of this research involves stylistic and textual analyses of works of calligraphy, in particular through an examination and interpretation of their extended meanings in terms of architectural symbology and social and cultural contexts. Findings showed that Chinese calligraphy was effectively used as a powerful vehicle for a purposeful development of contextual Christian spirituality in Hong Kong.

Keywords: Chinese calligraphy, Hong Kong architecture, Hong Kong calligraphy, Johannes Prip-Møller, Karl Ludvig Reichelt, Norwegian missionary, Tao Fong Shan Christian Center, traditional Chinese architecture

Procedia PDF Downloads 281
3920 Russia's War Memory: How Tolstoy Uses Homeric Epic to Reconstruct History

Authors: Svetlana Yefimenko

Abstract:

Situated within the fields of Russian literature, Russian history, and classics, this paper investigates the early writing of Leo Tolstoy in terms of his reception and appropriation of Homeric epic for the purposes of reconstructing early 19th-century Russian history. The epic mode, specifically its Homeric variation, was deployed in Tolstoy’s writing on his military experience in the Crimean War to legitimize a version of historical events which positioned Russian soldiers as the inheritors of ancient Greek heroism. With reference to Tolstoy’s oft-neglected Sevastopol’ Sketches, and the short stories The Raid, The Wood-Felling, and Two Hussars, this paper examines how such narratives pass from communicative memory into collective memory both in the Homeric epics and in Tolstoy’s reworking of them, particularly on the literary effects produced when the distance between communicative and collective memory collapses. Within a song culture, epic song functions as memory, and this paper shows how, by modeling his early work on epic, Tolstoy produced texts which act as memory itself, thereby becoming the authoritative version of Russia’s past in the Crimea, often contradicting historical facts.

Keywords: classical reception, collective memory, Russian history, Russian literature

Procedia PDF Downloads 133
3919 A Traceability Index for Food

Authors: Hari Pulapaka

Abstract:

This paper defines and develops the notion of a traceability index for food and may be used by any consumer (restaurant, distributor, average consumer etc.). The concept is then extended to a region's food system as a way to measure how well a regional food system utilizes its own bounty or at least, is connected to its food sources. With increasing emphases on the sustainability of aspects of regional and ultimately, the global food system, it is reasonable to accept that if we know how close (in relative terms) an end-user of a set of ingredients (as they traverse through the maze of supply chains) is from the sources, we may be better equipped to evaluate the quality of the set as measured by any number of qualitative and quantitative criteria. We propose a mathematical model which may be adapted to a number of contexts and sizes. Two hypothetical cases of different scope are presented which highlight how the model works as an evaluator of steps between an end-user and the source(s) of the ingredients they consume. The variables in the model are flexible enough to be adapted to other applications beyond food systems.

Keywords: food, traceability, supply chain, mathematical model

Procedia PDF Downloads 274
3918 The Jordanian Traditional Dress of Women as a Form of Cultural Heritage

Authors: Sarah Alkhateeb

Abstract:

This research explores the Jordanian traditional dress of women as a form of cultural heritage. The dress of the Jordanian woman expresses her social and cultural functions and reflects the local environment in its social and cultural frameworks and the determinants of the natural formation of climate and terrain, in addition to what is expressed by the person’s social status and position in the social ladder of any society. Therefore, the traditional dress of Jordanian women is distinguished by its abundance and diversity. Few studies have been conducted on the Jordanian traditional dress of women, the lack of studies about the Jordanian traditional dress of women needs highlighting and the characteristics of this dress have to be featured and documented as a part of cultural heritage. The main aim of this research is to contribute or to develop a conservation strategy to save this part of cultural heritage from loss. In this research, the qualitative method approach will be used and will follow the ethnographic method. The data will be gathered from a primary source which is the single focus group discussion with the TIRAZ museum team; the Jordanian traditional dress will be explored across three regions: The North, Middle and South of Jordan, investigating the regional differences and focusing on the details of the individual garment.

Keywords: Jordanian traditional dress, cultural heritage, tiraz museum, ethnographic method

Procedia PDF Downloads 166