Search results for: diurnal temperature cycle model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23200

Search results for: diurnal temperature cycle model

20590 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Authors: F. L. Motta, M. H. A. Santana

Abstract:

Humic Acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm Empty Fruit Bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Keywords: empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride

Procedia PDF Downloads 285
20589 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 362
20588 The Need for Implementing Building Information Modelling (BIM) and Integrated Project Delivery (IPD) in the Construction Project: A Case Study in UAE

Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji

Abstract:

Much of the waste that is generated throughout the life-cycle of a building is mainly related to project stakeholders not having access to information that others have created. This results in waste and high costs. Over the past decade, however, the industry reacted to these challenges by adopting effective procurement approaches, such as partnering and design and build, to improve collaboration and communication among projects’ stakeholders. Most recently, there is a focus on creating and reusing digital project information of stakeholders throughout the life-cycle to facilitate the exchange of information among partners. This shift is based around BIM (Building Information Modelling) and collaborative environment (IPD). The power of collaborative BIM goes beyond improving efficiency. Sustainability, perhaps the most important challenge for the design and construction community, is at the intersection of BIM and collaborative project delivery, drawing strength from both. Due to these benefits, a research study has been carried out to investigate the need of BIM and IPD, on a large scale construction project which is procured on a traditional approach, i.e. design-bid-build. A qualitative research work including a semi-structured interview with project partners was conducted on a typical project in the UAE, whereby the selected project suffered from severe delays and cost overrun. This paper aims to bring about clear evidence to what most likely to happen to a typical construction project in spite of employing very good consultants, project manager and contractors and how these problems could have been avoided if BIM and IPD were deployed.

Keywords: building information modelling (BIM), integrated project delivery (IPD), collaborative environment, case study

Procedia PDF Downloads 386
20587 Heat Waves and Hospital Admissions for Mental Disorders in Hanoi Vietnam

Authors: Phan Minh Trang, Joacim Rocklöv, Kim Bao Giang, Gunnar Kullgren, Maria Nilsson

Abstract:

There are recent studies from high income countries reporting an association between heat waves and hospital admissions for mental health disorders. It is not previously studied if such relations exist in sub-tropical and tropical low- and middle-income countries. In this study from Vietnam, the assumption was that hospital admissions for mental disorders may be triggered, or exacerbated, by heat exposure and heat waves. A database from Hanoi Mental Hospital with mental disorders diagnosed by the International Classification of Diseases 10, spanning over five years, was used to estimate the heatwave-related impacts on admissions for mental disorders. The relationship was analysed by a Negative Binomial regression model accounting for year, month, and days of week. The focus of the study was heat-wave events with periods of three or seven consecutive days above the threshold of 35oC daily maximum temperature. The preliminary study results indicated that heat-waves increased the risks for hospital admission for mental disorders (F00-79) from heat-waves of three and seven days with relative risks (RRs) of 1.16 (1.01–1.33) and 1.42 (1.02–1.99) respectively, when compared with non-heat-wave periods. Heatwave-related admissions for mental disorders increased statistically significantly among men, among residents in rural communities and in elderly. Moreover, cases for organic mental disorders including symptomatic illnesses (F0-9) and mental retardation (F70-79) raised in high risks during heat waves. The findings are novel studying a sub-tropical middle-income city, facing rapid urbanisation and epidemiological and demographic transitions.

Keywords: mental disorders, admissions for F0-9 or F70-79, maximum temperature, heat waves

Procedia PDF Downloads 229
20586 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 183
20585 Intelligent Wireless Patient Monitoring and Tracking System

Authors: Ch. Sandeep Kumar Subudhi, S. Sivanandam

Abstract:

Our system is to monitor the human body temperature, blood pressure (BP), Pulse Rate and ECG and tracking the patient location. In our system the body temperature is detected by using LM35 temperature sensor, blood pressure is detected by the BP sensor, pulse rate is detected by the ear plug pulse sensor and the ECG is detected by the three lead ECG sensor in the working environment of the patient. The sensed information is sent to the PIC16F877 microcontroller through signal conditioning circuit. A desired amount of sensor value is set and if it is exceeded preliminary steps should be taken by indication by buzzer. The sensor information will be transmitted from the patient unit to the main controller unit with the help of Zigbee communication medium which is connected with the microcontrollers in the both units. The main controller unit will send those sensor data as well as the location of that patient by the help of GPS module to the observer/doctor. The observer/doctor can receive the SMS sent by GSM module and further decision can be taken. The message is sent to a cell phone using global system mobile (GSM) Modem. MAX232 acts as a driver between microcontroller and modem.

Keywords: LM35, heart beat sensor, ECG Sensor, BP Sensor, Zigbee module, GSM module, GPS module, PIC16F877A microcontroller

Procedia PDF Downloads 364
20584 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State

Authors: Dong Zhao

Abstract:

Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂

Procedia PDF Downloads 42
20583 A Conceptual Study for Investigating the Preliminary State of Energy at the Birth of Universe and Understanding Its Emergence From the State of Nothing

Authors: Mahmoud Reza Hosseini

Abstract:

The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a “neutral state” possessing an energy level which is referred to as the “base energy”. The governing principles of base energy are discussed in detail in our second paper in the series “A Conceptual Study for Addressing the Singularity of the Emerging Universe” which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.

Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution

Procedia PDF Downloads 25
20582 The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus

Authors: Sinem Yıldırım, Çimen Özburak, Özge Özden

Abstract:

Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus.

Keywords: green roofs, indoor temperature, vegetation, mediterranean, cyprus

Procedia PDF Downloads 188
20581 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids

Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh

Abstract:

Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.

Keywords: green extraction, ultrasound, patchoulol, ionic liquids

Procedia PDF Downloads 344
20580 An Agent-Based Approach to Examine Interactions of Firms for Investment Revival

Authors: Ichiro Takahashi

Abstract:

One conundrum that macroeconomic theory faces is to explain how an economy can revive from depression, in which the aggregate demand has fallen substantially below its productive capacity. This paper examines an autonomous stabilizing mechanism using an agent-based Wicksell-Keynes macroeconomic model. This paper focuses on the effects of the number of firms and the length of the gestation period for investment that are often assumed to be one in a mainstream macroeconomic model. The simulations found the virtual economy was highly unstable, or more precisely, collapsing when these parameters are fixed at one. This finding may even suggest us to question the legitimacy of these common assumptions. A perpetual decline in capital stock will eventually encourage investment if the capital stock is short-lived because an inactive investment will result in insufficient productive capacity. However, for an economy characterized by a roundabout production method, a gradual decline in productive capacity may not be able to fall below the aggregate demand that is also shrinking. Naturally, one would then ask if our economy cannot rely on an external stimulus such as population growth and technological progress to revive investment, what factors would provide such a buoyancy for stimulating investments? The current paper attempts to answer this question by employing the artificial macroeconomic model mentioned above. The baseline model has the following three features: (1) the multi-period gestation for investment, (2) a large number of heterogeneous firms, (3) demand-constrained firms. The instability is a consequence of the following dynamic interactions. (a) A multiple-period gestation period means that once a firm starts a new investment, it continues to invest over some subsequent periods. During these gestation periods, the excess demand created by the investing firm will spill over to ignite new investment of other firms that are supplying investment goods: the presence of multi-period gestation for investment provides a field for investment interactions. Conversely, the excess demand for investment goods tends to fade away before it develops into a full-fledged boom if the gestation period of investment is short. (b) A strong demand in the goods market tends to raise the price level, thereby lowering real wages. This reduction of real wages creates two opposing effects on the aggregate demand through the following two channels: (1) a reduction in the real labor income, and (2) an increase in the labor demand due to the principle of equality between the marginal labor productivity and real wage (referred as the Walrasian labor demand). If there is only a single firm, a lower real wage will increase its Walrasian labor demand, thereby an actual labor demand tends to be determined by the derived labor demand. Thus, the second positive effect would not work effectively. In contrast, for an economy with a large number of firms, Walrasian firms will increase employment. This interaction among heterogeneous firms is a key for stability. A single firm cannot expect the benefit of such an increased aggregate demand from other firms.

Keywords: agent-based macroeconomic model, business cycle, demand constraint, gestation period, representative agent model, stability

Procedia PDF Downloads 151
20579 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 120
20578 2D Surface Flow Model in The Biebrza Floodplain

Authors: Dorota Miroslaw-Swiatek, Mateusz Grygoruk, Sylwia Szporak

Abstract:

We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009.

Keywords: floodplain flow, Biebrza valley, model simulation, 2D surface flow model

Procedia PDF Downloads 485
20577 A Study of Mode Choice Model Improvement Considering Age Grouping

Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho

Abstract:

The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.

Keywords: age grouping, aging, mode choice model, multinomial logit model

Procedia PDF Downloads 313
20576 BERT-Based Chinese Coreference Resolution

Authors: Li Xiaoge, Wang Chaodong

Abstract:

We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.

Keywords: BERT, coreference resolution, deep learning, nature language processing

Procedia PDF Downloads 193
20575 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding

Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard

Abstract:

Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and bio-sensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434. In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.

Keywords: flow length, micro cantilevers, micro injection moulding, microfabrication

Procedia PDF Downloads 378
20574 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength

Procedia PDF Downloads 338
20573 Multilevel Modeling of the Progression of HIV/AIDS Disease among Patients under HAART Treatment

Authors: Awol Seid Ebrie

Abstract:

HIV results as an incurable disease, AIDS. After a person is infected with virus, the virus gradually destroys all the infection fighting cells called CD4 cells and makes the individual susceptible to opportunistic infections which cause severe or fatal health problems. Several studies show that the CD4 cells count is the most determinant indicator of the effectiveness of the treatment or progression of the disease. The objective of this paper is to investigate the progression of the disease over time among patient under HAART treatment. Two main approaches of the generalized multilevel ordinal models; namely the proportional odds model and the nonproportional odds model have been applied to the HAART data. Also, the multilevel part of both models includes random intercepts and random coefficients. In general, four models are explored in the analysis and then the models are compared using the deviance information criteria. Of these models, the random coefficients nonproportional odds model is selected as the best model for the HAART data used as it has the smallest DIC value. The selected model shows that the progression of the disease increases as the time under the treatment increases. In addition, it reveals that gender, baseline clinical stage and functional status of the patient have a significant association with the progression of the disease.

Keywords: nonproportional odds model, proportional odds model, random coefficients model, random intercepts model

Procedia PDF Downloads 409
20572 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 299
20571 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 607
20570 Application of Interferometric Techniques for Quality Control Oils Used in the Food Industry

Authors: Andres Piña, Amy Meléndez, Pablo Cano, Tomas Cahuich

Abstract:

The purpose of this project is to propose a quick and environmentally friendly alternative to measure the quality of oils used in food industry. There is evidence that repeated and indiscriminate use of oils in food processing cause physicochemical changes with formation of potentially toxic compounds that can affect the health of consumers and cause organoleptic changes. In order to assess the quality of oils, non-destructive optical techniques such as Interferometry offer a rapid alternative to the use of reagents, using only the interaction of light on the oil. Through this project, we used interferograms of samples of oil placed under different heating conditions to establish the changes in their quality. These interferograms were obtained by means of a Mach-Zehnder Interferometer using a beam of light from a HeNe laser of 10mW at 632.8nm. Each interferogram was captured, analyzed and measured full width at half-maximum (FWHM) using the software from Amcap and ImageJ. The total of FWHMs was organized in three groups. It was observed that the average obtained from each of the FWHMs of group A shows a behavior that is almost linear, therefore it is probable that the exposure time is not relevant when the oil is kept under constant temperature. Group B exhibits a slight exponential model when temperature raises between 373 K and 393 K. Results of the t-Student show a probability of 95% (0.05) of the existence of variation in the molecular composition of both samples. Furthermore, we found a correlation between the Iodine Indexes (Physicochemical Analysis) and the Interferograms (Optical Analysis) of group C. Based on these results, this project highlights the importance of the quality of the oils used in food industry and shows how Interferometry can be a useful tool for this purpose.

Keywords: food industry, interferometric, oils, quality control

Procedia PDF Downloads 359
20569 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 55
20568 UML Model for Double-Loop Control Self-Adaptive Braking System

Authors: Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption, we can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.

Keywords: activity diagram, automotive, braking system, double-loop, self-adaptive, UML, vehicle

Procedia PDF Downloads 398
20567 Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia

Authors: Ahmad Zaini, F. Muhammad Reza Hadafi, Surya Sumpeno, Muhtadin, Mochamad Hariadi

Abstract:

The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%.

Keywords: 3D reconstruction, light pattern structure, texture mapping, museum

Procedia PDF Downloads 449
20566 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone

Authors: Anıl Dinçer, Dilek Duranoğlu

Abstract:

Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.

Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol

Procedia PDF Downloads 283
20565 Frustration Measure for Dipolar Spin Ice and Spin Glass

Authors: Konstantin Nefedev, Petr Andriushchenko

Abstract:

Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.

Keywords: frustrations, parameter of order, statistical physics, magnetism

Procedia PDF Downloads 156
20564 Evidence of Behavioural Thermoregulation by Dugongs (Dugong dugon) at the High Latitude Limit to Their Range in Eastern Australia

Authors: Daniel R. Zeh, Michelle R. Heupel, Mark Hamann, Rhondda Jones, Colin J. Limpus, Helene Marsh

Abstract:

Marine mammals live in an environment with water temperatures nearly always lower than the mammalian core body temperature of 35 - 38°C. Marine mammals can lose heat at high rates and have evolved a range of adaptations to minimise heat loss. Our project tracked dugongs to examine if there was a discoverable relationship between the animals’ movements and the temperature of their environment that might suggest behavioural thermoregulation. Twenty-nine dugongs were fitted with acoustic and satellite/GPS transmitters in 2012, 2013 and 2014 in Moreton Bay Queensland at the high latitude limit of the species’ winter range in eastern Australia on 30 occasions (one animal was tagged twice). All 22 animals that stayed in the area and had functional transmitters made at least one (and up to 66) return trip(s) to the warmer oceanic waters outside the bay where seagrass is unavailable. Individual dugongs went in and out of the bay in synchrony with the tides and typically spent about 6 hours in the oceanic water. There was a diel pattern in the movements: 85% of outgoing trips occurred between midnight and noon. There were significant individual differences, but the likelihood of a dugong leaving the bay was independent of body length or sex. In Quarter 2 (April – June), the odds of a dugong making a trip increased by about 40% for each 1°C increase in the temperature difference between the bay and the warmer adjacent oceanic waters. In Quarter 3, the odds of making a trip were lower when the outside –inside bay temperature differences were small or negative but increased by a factor of up to 2.12 for each 1°C difference in outside – inside temperatures. In Quarter 4, the odds of making a trip were higher when it was cooler outside the bay and decreased by a factor of nearly 0.5 for each 1°C difference in outside – inside bay temperatures. The activity spaces of the dugongs generally declined as winter progressed suggesting a change in the cost-effectiveness of moving outside the bay. Our analysis suggests that dugongs can thermoregulate their core temperature through the behaviour of moving to water having more favourable temperature.

Keywords: acoustic, behavioral thermoregulation, dugongs, movements, satellite, telemetry, quick fix GPS

Procedia PDF Downloads 160
20563 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)

Authors: Cheng-Yen Lu, Chin-Yuan Hsu

Abstract:

Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.

Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome

Procedia PDF Downloads 444
20562 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities

Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou

Abstract:

Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.

Keywords: accessibility, cycling, green spaces, spatial data, urban environment

Procedia PDF Downloads 96
20561 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 134