Search results for: relaxation training
1664 Towards a Successful Implementation of ICT in Education : Analyzing Teacher Practices and Perceptions
Authors: Azzeddine Atibi, Lamalif latifa, Khadija El Kababi, Salim Ahmed, Mohamed Radid
Abstract:
This study analyzes the integration of Information and Communication Technologies (ICT) in modern education, where these tools have become essential. Due to the rapid emergence of new technologies and their increasing adoption in education, it is important to understand how teachers use and perceive these tools. The study pursues three objectives : examining current teacher practices regarding ICT, evaluating their impact on student skills and engagement, and making recommendations for better integration of ICT in education. The study's methodology is based on a quantitative approach, using a questionnaire administered to a sample of 104 teachers. This questionnaire, rigorously validated to ensure its reliability, gathers representative data on perceptions and challenges related to the use of ICT. The results show widespread adoption of ICT by teachers, with the majority reporting an improvement in student skills due to these technologies. However, opinions diverge on their impact on student engagement : some teachers note an increase in engagement, while others remain skeptical. Persistent challenges include insufficient technological infrastructure and the need for ongoing training. The recommendations highlight the importance of improving infrastructures and supporting the professional development of teachers to optimize the integration of ICT.Keywords: ICT, education, teaching practices, teacher perceptions, continuing education
Procedia PDF Downloads 371663 Need of More Social Work Students to Work in Aging Fields
Authors: Mbita Mbao
Abstract:
Social work programs are grappling with changing students’ attitudes about working with older adults. Our study aimed to understand whether adding a guest speaker working in the field into weekly content would influence students’ attitudes about working with older adults. We conducted an exploratory study using a cross-sectional design with a pre and post-test to answer our question. Eighteen MSW students were enrolled in the ‘Social Work with Older Adults’ course, and 17 students completed the pre-posttests. Willingness to work with older adults was measured using the ‘Willingness to Work with Elderly People Scale (WEPS)’. Guest speakers were recruited from local area agencies on aging. A significant finding was a statistically significant (t= −3.31, p < .01) increase from pre- (M = 3.59, SD = 1.54) to post-test (M = 4.88, SD = 1.22) scores for the item, ‘My professors advise me to consider aged care career.’ In addition, there were statistically significant pre to post-test differences for all items of ‘Perceived Behavioral Control’ and ‘Intention toward working with older adults’ reflecting competence, training, skills, and capabilities to work with older adults, suggesting guest speakers may play a crucial role as influential sources to positively shape students’ attitudes and intentions toward working with older adults.Keywords: guest speakers, workforce, aging, students
Procedia PDF Downloads 261662 The Challenges of Innovation Leadership in the Public Sector
Authors: Shaker A. Aladwan
Abstract:
This paper aims to explore the Barriers to innovation leadership in Jordanian public sector organizations. Qualitative approach was adopted, and content analysis was used to analyze the 18 assessment reports which are extracted from the public innovation award in Jordan, then, 20 semi-structured interviews were conducted with the key persons who are involved with innovation initiatives in the public sector organizations in Jordan. Several Barriersthat face the innovation leadership in the Jordanian public sector organizations. Managerially, the challenges include lack of innovation vision, implementation lack of innovation core values, lack of strategic planning for innovation, bad bureaucracy culture, and excessive centralization. Technically, the challenges include lack of task assignment for employees, lack of resources, lack of innovative training programs, lack of knowledge sharing, and the failure of governments to formulate policies and regulations. most of the studies focused on innovation in the non-public sector organizations, and most of them were conducted in the American and Western countries, which are different in terms of culture, kinds of innovation, barriers, and drivers. Thus, this paper provides new insights into barriers to innovation leadership in the public sector and in a new research context. This paper also provides a theoretical contribution by diagnosing the barriers facing innovation within the context of public administration in developing countries.Keywords: innovation, excellence award, challenges, public sector, jordan
Procedia PDF Downloads 1311661 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 1831660 Analyzing Log File of Community Question Answering for Online Learning
Authors: Long Chen
Abstract:
With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training
Procedia PDF Downloads 4421659 Philosophical Foundations of Education at the Kazakh Languages by Aiding Communicative Methods
Authors: Duisenova Marzhan
Abstract:
This paper considers the looking from a philosophical point of view the interactive technology and tiered developing Kazakh language teaching primary school pupils through the method of linguistic communication, content and teaching methods formed in the education system. The values determined by the formation of new practical ways that could lead to a novel qualitative level and solving the problem. In the formation of the communicative competence of elementary school students would be to pay attention to other competencies. It helps to understand the motives and needs socialization of students, the development of their cognitive abilities and participate in language relations arising from different situations. Communicative competence is the potential of its own in pupils creative language activity. In this article, the Kazakh language teaching in primary school communicative method is presented. The purpose of learning communicative method, personal development, effective psychological development of the child, himself-education, expansion and growth of language skills and vocabulary, socialization of children, the adoption of the laws of life in the social environment, analyzed the development of vocabulary richness of the language that forms the erudition to ensure continued improvement of education of the child.Keywords: communicative, culture, training, process, method, primary, competence
Procedia PDF Downloads 3411658 Catering for Children with Autism in the Regular Classroom: Challenges and the Way Forward
Authors: Beatrice Tayo Ajayi, Dzever Linus Terry
Abstract:
Pupils with autism in the general classroom have dare need to be adequately catered for in social and academic activities for successful attainment in school work and future life. However, adequate catering for autistic children by teachers that basically received no training in content related to inclusive education and lack the ability to use inclusive strategies during classroom instruction appears to be a mirage. This paper intends to examine the current classroom environment in relation to the level to which autistic primary school pupils are catered for in the regular classroom. The study also seeks to identify the challenges teachers experience in the course of catering to the needs of children with autism and the way out. The sample consists of thirty (30) primary school teachers of Ondo West Local Government Area, Ondo State, Nigeria (10 male, 15 female), age grades between twenty five (25) to sixty (60). Data collection will be a survey using the researcher developed 18 statements Four Point- Likert Scale type to assess the level to which participants agree or disagree with the statement about catering for pupils with autism. Results are to be evaluated using descriptive statistical methods of mean scores and t-test.Keywords: autism, catering, general classroom, way forward
Procedia PDF Downloads 1201657 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 3001656 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan
Authors: Chingwen Yeh, Yu Ru Chen
Abstract:
This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic
Procedia PDF Downloads 2991655 Exposure of Emergency Department Staff in Jordanian Hospitals to Workplace Violence: A Cross Sectional Study
Authors: Ibrahim Bashayreh Al-Bashtawy Mohammed, Al-Azzam Manar Ahmad Rawashda, Abdul-Monim Batiha Mohammad Sulaiman
Abstract:
Background: Workplace violence against emergency department staff (EDS) is considered one of the most common and widespread phenomena of violence. Purpose: The purpose of this research is to determine the incidence rates of workplace violence and the predicting factors of violent behaviors among emergency departments’ staff in Jordanian hospitals. Methods: A cross-sectional study was used to investigate workplace violence towards a convenience sample of 355 emergency staff departments from 8 governmental and 4 private Jordanian hospitals. Data were collected by a self-administered questionnaire that was developed for the purpose of this study. Results: 72% of workers in emergency departments within Jordanian hospitals are exposed to violent acts, and that patients and their relatives are the main source of workplace violence. The contributing factors as reported by the participants were related to overcrowding, lack of resources, staff shortages, and the absence of effective antiviolence policies. Conclusions/implications for Practice: Policies and legislation regarding violence should be instituted and developed, and emergency department staff should be given training on how to deal with violent incidents, as well as on violence-management policies.Keywords: Jordan, emergency staff department, workplace violence, community health
Procedia PDF Downloads 3361654 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 1511653 Knowledge Transfer in Industrial Clusters
Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha
Abstract:
This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.Keywords: industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry
Procedia PDF Downloads 3701652 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1281651 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 1901650 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2131649 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4391648 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 3031647 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering
Procedia PDF Downloads 3551646 Information Construction of Higher Education in Teaching Practice
Authors: Yang Meng, James L. Patnao
Abstract:
With the rapid development of information technology and the impact of the epidemic environment, the traditional teaching model can’t longer meet the requirements of the development of the times. The development of teaching mechanism is the inevitable trend of the future development of higher education. We must further promote the informatization of higher education in teaching practice, let modern information technology penetrate and practice in classroom teaching, and provide promising opportunities for the high-quality development of higher education. This article mainly through the distribution of questionnaires to teachers of colleges and universities, so as to understand the degree of informatization in the teaching of colleges and universities. And on the basis of domestic and foreign scholars' research on higher education informatization, it analyzes the existing problems, and finds the optimal solution based on the needs of education and teaching development. According to the survey results, most college teachers will use information technology in teaching practice, but the information technology teaching tools used by teachers are relatively simple, and most of them only use slides. In addition, backward informatization infrastructure and less informatization training are the main challenges facing the current teaching informatization construction. If colleges and universities can make good use of information technology and multimedia technology and combine it with traditional teaching, it will definitely promote the development of college education and further promote the modernization and informatization of higher education.Keywords: higher education, teaching practice, informatization construction, e-education
Procedia PDF Downloads 1241645 Exploration of Perceived Value of a Special Education Laws and Ethics’ Course Impact on Administrator Capacity
Authors: Megan Chaney
Abstract:
In the United States, research continues to show school administrators do not view themselves as adequately prepared in the area of special education. Often, special education is an omitted topic of study for school administrator preparation programs. The majority of special education teachers do not view their principals as well-prepared to support them in the educational context. Administrator preparation in the area of special education may begin at the foundational levels of understanding but is fundamentally an equity issue when serving individuals from marginalized populations with an urgent need to increase inclusionary practices. Special education and building-level administrators have a direct impact on teacher quality, instructional practices, inclusion, and equity with the opportunity to shape positive school culture. The current study was situated within an innovative IHE/LEA partnership pathway implemented with current K-12 administrators earning a Mild/Moderate Education Specialist Credential or coursework equivalent. Specifically, the study examined administrator’s perception of the Special Education Laws and Ethics’ course value and impact on the capacity to serve children with exceptionalities within the comprehensive school site context.Keywords: special education laws and ethics, school adminstrator perspectives, school administrator training, inclusive practices
Procedia PDF Downloads 1121644 A Sports-Specific Physiotherapy Center Treats Sports Injuries
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.Keywords: sports injuries, athletes, joint injuries, injured players
Procedia PDF Downloads 741643 Reducing the Incidence of Hyperphosphatemia in Patients Receiving Dialysis
Authors: Tsai Su Hui
Abstract:
Background: Hyperphosphatemia in patients receiving dialysis can cause hyperparathyroidism, which can lead to renal osteodystrophy, cardiovascular disease and mortality. Data showed that 26% of patients receiving dialysis had blood phosphate levels of >6.0 mg/dl at this unit from January to March 2017, higher than the Taiwan Society of Nephrology evaluation criteria of < 20%. After analysis, possible reasons included: 1. Incomprehensive education for nurse and lack of relevant training. 2. Insufficient assistive aids for nursing health education instruction. 3. Patients were unsure which foods are high or low in phosphate. 4. Patients did not have habits of taking medicine with them and how to correctly administer the medication. Purpose: To reduce the percentage of patients receiving dialysis with blood phosphate levels of >6.0 mg/dl to less than 20% at this unit. Method: (1) Improve understanding of hyperphosphatemia and food for patients receiving dialysis and their families, (2) Acquire more nursing instruction assistive aids and improve knowledge of hyperphosphatemia for nurse. Results: After implementing the project, the percentage of patients receiving dialysis with blood phosphate levels of >6.0 mg/dl decreased from 26.0% to 18.8% at this unit. By implementing the project, the professional skills of nurse improved, blood phosphate levels of patients receiving dialysis were reduced, and the quality of care for patients receiving dialysis at this unit was enhanced.Keywords: hemodialysis, hyperphosphatemia, incidence, reducing
Procedia PDF Downloads 1271642 Community Participation in Health Planning in Australia
Authors: Amanda Kenny, Virginia Dickson-Swift, Jane Farmer, Sarah Larkins, Karen Carlisle, Helen Hickson
Abstract:
Rural ECOH (Engaging Communities in Oral Health) is a collaborative project that connects policy makers, service providers and community members. The aim of the project is to empower community members to determine what is important for their community and to design the services that they need. This three-year project is currently underway in six rural communities across Australia. This study is specifically focused on Remote Services Futures (RSF), an evidence-based method of community participation that was developed in Scotland. The findings highlight the complexities of community participation in health service planning. We assumed that people living in rural communities would welcome participation in oral health planning and engage with their community to discuss these issues. We found that to understand the relationships between community members and health service providers, it was essential to identify the formal and informal community leaders and to engage stakeholders from the various community governance structures. Our study highlights the sometimes ‘messiness’ of decision making in rural communities as well as ways to ensure that community members have the training and practical skills necessary to participate in community decision making.Keywords: community participation, health planning, rural ECOH, Remote Services Futures
Procedia PDF Downloads 5411641 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques
Procedia PDF Downloads 1911640 Project Management Practices and Operational Challenges in Conflict Areas: Case Study Kewot Woreda North Shewa Zone, Amhara Region, Ethiopia
Authors: Rahel Birhane Eshetu
Abstract:
This research investigates the complex landscape of project management practices and operational challenges in conflict-affected areas, with a specific focus on Kewot Woreda in the North Shewa Zone of the Amhara region in Ethiopia. The study aims to identify essential project management methodologies, the significant operational hurdles faced, and the adaptive strategies employed by project managers in these challenging environments. Utilizing a mixed-methods approach, the research combines qualitative and quantitative data collection. Initially, a comprehensive literature review was conducted to establish a theoretical framework. This was followed by the administration of questionnaires to gather empirical data, which was then analyzed using statistical software. This sequential approach ensures a robust understanding of the context and challenges faced by project managers. The findings reveal that project managers in conflict zones encounter a range of escalating challenges. Initially, they must contend with immediate security threats and the presence of displaced populations, which significantly disrupt project initiation and execution. As projects progress, additional challenges arise, including limited access to essential resources and environmental disruptions such as natural disasters. These factors exacerbate the operational difficulties that project managers must navigate. In response to these challenges, the study highlights the necessity for project managers to implement formal project plans while simultaneously adopting adaptive strategies that evolve over time. Key adaptive strategies identified include flexible risk management frameworks, change management practices, and enhanced stakeholder engagement approaches. These strategies are crucial for maintaining project momentum and ensuring that objectives are met despite the unpredictable nature of conflict environments. The research emphasizes that structured scope management, clear documentation, and thorough requirements analysis are vital components for effectively navigating the complexities inherent in conflict-affected regions. However, the ongoing threats and logistical barriers necessitate a continuous adjustment to project management methodologies. This adaptability is not only essential for the immediate success of projects but also for fostering long-term resilience within the community. Concluding, the study offers actionable recommendations aimed at improving project management practices in conflict zones. These include the adoption of adaptive frameworks specifically tailored to the unique conditions of conflict environments and targeted training for project managers. Such training should focus on equipping managers with the skills to better address the dynamic challenges presented by conflict situations. The insights gained from this research contribute significantly to the broader field of project management, providing a practical guide for practitioners operating in high-risk areas. By emphasizing sustainable and resilient project outcomes, this study underscores the importance of adaptive management strategies in ensuring the success of projects in conflict-affected regions. The findings serve not only to enhance the understanding of project management practices in Kewot Woreda but also to inform future research and practice in similar contexts, ultimately aiming to promote stability and development in areas beset by conflict.Keywords: project management practices, operational challenges, conflict zones, adaptive strategies
Procedia PDF Downloads 201639 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness
Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta
Abstract:
Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health
Procedia PDF Downloads 5351638 Assessing Teachers’ Interaction with Children in Early Childhood Education (ECE). Cambodian Preschool Teachers’ Beliefs and Intensions
Authors: Shahid Karim, Alfredo Bautista, Kerry Lee
Abstract:
The association between teachers’ beliefs and practices has been extensively studied across the levels of education. Yet, there is a lack of context-specific evidence on the relationship between teachers’ beliefs and intentions regarding their interaction with children in early childhood education settings. Given the critical role of teachers’ beliefs in their practices, the present study examined Cambodian preschool teachers’ beliefs and intentions related to their interaction with children and what factors affect the relationship. Data was collected through a self-reported Beliefs and Intentions Questionnaire (BTQ) from preschool teachers teaching at different types of preschools in Cambodia. Four hundred nine preschool teachers teaching in public, private and community schools participated in the study through an online survey administered on Qualtrics. The quantitative analysis of the data revealed that teachers’ beliefs predict their intentions in preschool. Teachers’ teaching experience, level of education and professional training moderated the relationship between their beliefs and intentions. Differences existed between the groups of teachers teaching in different types of preschools and genders. Implications of the findings related to policy and preschool teachers’ professional development are discussed.Keywords: teacher-child interaction, teaching beliefs, teaching intentions, preschool teaching accreditations, Cambodia
Procedia PDF Downloads 971637 Comparison Analysis on the Safety Culture between the Executives and the Operators: Case Study in the Aircraft Manufacturer in Taiwan
Authors: Wen-Chen Hwang, Yu-Hsi Yuan
Abstract:
According to the estimation made by researchers of safety and hygiene, 80% to 90% of workplace accidents in enterprises could be attributed to human factors. Nevertheless, human factors are not the only cause for accidents; instead, happening of accidents is also closely associated with the safety culture of the organization. Therefore, the most effective way of reducing accident rate would be to improve the social and the organizational factors that influence organization’s safety performance. Overview the present study is to understand the current level of safety culture in manufacturing enterprises. A tool for evaluating safety culture matching the needs and characteristics of manufacturing enterprises was developed by reviewing literature of safety culture, and taking the special backgrounds of the case enterprises into consideration. Expert validity was also implied for developing the questionnaire. Moreover, safety culture assessment was conducted through the practical investigation of the case enterprises. Total 505 samples were involved, 53 were executives and 452 were operators. The result of this study in comparison of the safety culture level between the executives and the operators was reached the significant level in 8 dimensions: Safety Commitment, Safety System, Safety Training, Safety Involvement, Reward and Motivation, Communication and Reporting, Leadership and Supervision, Learning and Changing. In general, the overall safety culture were executive level higher than operators level (M: 74.98 > 69.08; t=2.87; p < 0.01).Keywords: questionnaire survey, safety culture, t-test, media studies
Procedia PDF Downloads 3191636 Improving Music Appreciation and Narrative Abilities of Students with Intellectual Disabilities through a College Service-Learning Model
Authors: Shan-Ken Chien
Abstract:
This research aims to share the application of the Music and Narrative Curriculum developed through a college community service-learning course to a special education classroom in a local secondary school. The development of the Music and Narrative Curriculum stems from the music appreciation courses that the author has taught at the university. The curriculum structure consists of three instructional phases, each with three core literacy. This study will show the implementation of an eighteen-week general music education course, including classroom training on the university campus and four intervention music lessons in a special education classroom. Students who participated in the Music and Narrative Curriculum came from two different parts. One is twenty-five college students enrolling in Music Literacy and Community Service-Learning, and the other one is nine junior high school students with intellectual disabilities (ID) in a special education classroom. This study measures two parts. One is the effectiveness of the Music and Narrative Curriculum in applying four interventions in music lessons in a special education classroom, and the other is measuring college students' service-learning experiences and growth outcomes.Keywords: college service-learning, general music education, music literacy, narrative skills, students with special needs
Procedia PDF Downloads 851635 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 157