Search results for: doubly fed induction machine
979 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 362978 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: dexel, process stability, material removal, milling
Procedia PDF Downloads 524977 The Development of Monk’s Food Bowl Production on Occupational Health Safety and Environment at Work for the Strength of Rattanakosin Local Wisdom
Authors: Thammarak Srimarut, Witthaya Mekhum
Abstract:
This study analysed and developed a model for monk’s food bowl production on occupational health safety and environment at work for the encouragement of Rattanakosin local wisdom at Banbart Community. The process of blowpipe welding was necessary to produce the bowl which was very dangerous or 93.59% risk. After the employment of new sitting posture, the work risk was lower 48.41% or moderate risk. When considering in details, it was found that: 1) the traditional sitting posture could create work risk at 88.89% while the new sitting posture could create the work risk at 58.86%. 2) About the environmental pollution, with the traditional sitting posture, workers exposed to the polluted fume from welding at 61.11% while with the new sitting posture workers exposed to the polluted fume from welding at 40.47%. 3) On accidental risk, with the traditional sitting posture, workers exposed to the accident from welding at 94.44% while with the new sitting posture workers exposed to the accident from welding at 62.54%.Keywords: occupational health safety, environment at work, Monk’s food bowl, machine intelligence
Procedia PDF Downloads 435976 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends
Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino
Abstract:
Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.Keywords: biodiesel, blends, macauba kernel oil, stability oxidative
Procedia PDF Downloads 538975 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 115974 Economic Policy to Promote small and Medium-sized Enterprises in Georgia in the Post-Pandemic Period
Authors: Gulnaz Erkomaishvili
Abstract:
Introduction: The paper assesses the impact of the COVID-19 pandemic on the activities of small and medium-sized enterprises in Georgia, identifies their problems, and analyzes the state economic policy measures. During the pandemic, entrepreneurs named the imposition of restrictions, access to financial resources, shortage of qualified personnel, high tax rates, unhealthy competition in the market, etc. as the main challenges. The Georgian government has had to take special measures to mitigate the crisis impact caused by the pandemic. For example - in 2020, they mobilized more than 1,6 billion Gel for various eventsto support entrepreneurs. Small and medium-sized entrepreneurship development strategy is presented based on the research; Corresponding conclusions are made, and recommendations are developed. Objectives: The object of research is small and medium-sized enterprises and economic-political decisions aimed at their promotion.Methodology: This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions: The COVID-19pandemic has had a significant impact on small and medium-sized enterprises. For them, Lockdown is a major challenge. Total sales volume decreased. At the same time, the innovative capabilities of enterprises and the volume of sales in remote channels have increased. As for the assessment of state support measures by small and medium-sizedentrepreneurs, despite the existence of support programs, a large number of entrepreneurs still do not evaluate the measures taken by the state positively. Among the desirable measures to be taken by the state, which would improve the activities of small and medium-sized entrepreneurs, who negatively or largely negatively assessed the activity of the state, named: tax incentives/exemption from certain taxes at the initial stage; Need for periodic trainings/organization of digital technologies, marketing training courses to improve the qualification of employees; Logic and adequacy of criteria when awarding grants and funding; Facilitating the finding of investors; Less bureaucracy, etc.Keywords: small and medium enterprises, small and medium entrepreneurship, economic policy for small and medium entrepreneurship development, government regulations in Georgia, COVID-19 pandemic
Procedia PDF Downloads 154973 Zoledronic Acid with Neoadjuvant Chemotherapy in Advanced Breast Cancer Prospective Study 2011–2014
Authors: S. Sakhri
Abstract:
Background: The use of Zoledronic acid (ZA) is an established place in the treatment of malignant tumors with a predilection for the skeleton of interest (in particular metastasis). Although the main target of Zoledronic acid was osteoclasts, there are preclinical data suggest that Zoledronic acid may have an antitumor effect on cells other than osteoclasts, including tumor cells. Antitumor activity, including the inhibition of tumor cell growth and the induction of apoptosis of tumor cells, inhibition of tumor cell adhesion and invasion, and anti-angiogenic effects have been demonstrated. Methods. From (2012 to 2014), 438 patients were included respondents the inclusion criteria, respectively. This is a prospective study over a 4 year period. Of all patients (N=438), 432 received neoadjuvant chemotherapy with Zoledronic acid. The primary end point was the pathologic complete response in advancer breast cancer stage. The secondary end point is to evaluate Clinical response according to RECIST criteria; estimate the bone density before and at the end of chemotherapy in women with locally advanced breast cancer, Toxicity Evaluation and Overall survival using Kaplan-Meier and log test. Result: The Objective response rate was 97% after (C4) with 3% stabilizations and 99, 3% of which 0.7% C8 after stabilization. The clinical complete response was 28% after C4 respectively, and 46.8% after C8, the pathologic complete response rate was 40.13% according to the classification Sataloff. We observed that the pathologic complete response rate was the most raised in the group including Her2 (luminal Her2 and Her2) the lowest in the triple negative group as classified by Sataloff. We found that the pCR is significantly higher in the age group (35-50 years) with 53.17%. Those who have more than 50 years in 2nd place with 27.7% and the lower in young woman 35 years pCR was 19%, not statistically significant, -The pCR was also in favor of the menopausal group in 51, 4%, and 48, 55% for non-menopausal women. The average duration of overall survival was also significantly in the subgroup (Luminal -Her2, Her2) compared with triple negative. It is 47.18 months in the luminal group vs. 38.95 in the triple negative group. -Was observed in our study a difference in quality of life between (C1) was the admission of the patient, and after (C8), we found an increase in general signs and a deterioration in the psychological state C1, in contrast to the C8 these general signs and mental status improves, up to 12, and 24 months. Conclusion The results of this study suggest that the addition of ZA to néoadjuvant CT has potential anti-cancer benefit in patients (Luminal -Her2, Her2) compared with triple negative with or without menopause status.Keywords: HER2+, RH+, breast cancer, tyrosine kinase
Procedia PDF Downloads 209972 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development
Authors: Ambra Giovannelli, Erika Maria Archilei
Abstract:
The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine
Procedia PDF Downloads 208971 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle
Authors: M. Khairudin
Abstract:
This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.Keywords: lathe spindle, QFT, robust control, system identification
Procedia PDF Downloads 542970 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 221969 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 324968 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen
Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan
Abstract:
A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.Keywords: analytic network process, booking amount, risk priority number, supply chain performance
Procedia PDF Downloads 293967 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level
Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham
Abstract:
Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes
Procedia PDF Downloads 227966 Antiulcer Potential of Heme Oxygenase-1 Inducers
Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej
Abstract:
Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc
Procedia PDF Downloads 502965 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers
Authors: Bachir Chemani, Rachid Halfaoui
Abstract:
The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.Keywords: textile, cotton, pressure, venous ulcers, elastic
Procedia PDF Downloads 359964 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 72963 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System
Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma
Abstract:
Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.Keywords: machine learning, wearable devices, user interface, user experience, internet of things
Procedia PDF Downloads 291962 Innovations and Agricultural Development Potential in Georgia
Authors: Tamar Lazariashvili
Abstract:
Introduction: The growth and development of the economy in the country depend on many factors, the most important of which is the use of innovation. The article analyzes the innovations and the potential of agricultural development in Georgia, presents the problems in the field, justifies the need to introduce innovations, shows the policy of innovation development, evaluates the positive and negative factors of the use of innovations in agriculture. Methodology: The article uses general and specific research methods, namely, analysis, synthesis, induction, deduction, comparison and statistical ones: selection, grouping, observation, trend. All these methods used together in the article reveal the main problems and challenges and their development trends. Main Findings: The introduction of innovations for the country has an impact if there is established state support system for business development and the State creates an effective environment for innovation development. As a result, the appropriate establishment gives incentives to increase budget revenues, create new jobs, increase export turnover and improve the overall economic situation in the country. Georgia has sufficient resource potential to create and develop new businesses in agriculture by introducing innovations and contribute to the further socio-economic development of the country. Political and economic stability, the existing legislation in the country, infrastructure, the proper functioning of financial institutions and the qualification of the workforce are crucial for the development of innovations. These criteria determine the political and economic ratings of all countries of the world, which are of great importance to foreign investors in the implementation of innovations. Conclusion: Enactment of agro-insurance will increase the interest and confidence of financial institutions in the farming sector, financial resources will be accessible to the farmers that will facilitate the stable development of the sector in the country. The size of the agro-insurance market in the country should be increased and the new territories should be covered. The State must have an obligation to ensure the risk of farmers and subsidize insurance companies. Based on an analysis of the insurance market the conclusions on agro-insurance issues and the relevant recommendations are proposed. The introduction of innovations in agriculture will have a great impact on the Georgian economy: it will improve the technological base, establish enterprises equipped with modern equipment and methodologies, retrain existing enterprises, promote to improve skills of workers and improve management systems. Based on the analysis, conclusions are made about the prospects for the development of innovation in agriculture and relevant recommendations are proposed.Keywords: agriculture, development potential, innovation, optimal environment
Procedia PDF Downloads 179961 Optimization of Surface Roughness by Taguchi’s Method for Turning Process
Authors: Ashish Ankus Yerunkar, Ravi Terkar
Abstract:
Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer
Procedia PDF Downloads 366960 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller
Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.
Abstract:
This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.Keywords: wind, grid, PMSG, MPPT, OTSR
Procedia PDF Downloads 359959 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 81958 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 134957 Experimental Investigation of Folding of Rubber-Filled Circular Tubes on Energy Absorption Capacity
Authors: MohammadSadegh SaeediFakher, Jafar Rouzegar, Hassan Assaee
Abstract:
In this research, mechanical behavior and energy absorption capacity of empty and rubber-filled brazen circular tubes under quasi-static axial loading are investigated, experimentally. The brazen tubes were cut out of commercially available brazen circular tubes with the same length and diameter. Some of the specimens were filled with rubbers with three different shores and also, an empty tube was prepared. The specimens were axially compressed between two rigid plates in a quasi-static process using a Zwick testing machine. Load-displacement diagrams and energy absorption of the tested tubes were extracted from experimental data. The results show that filling the brazen tubes with rubber causes those to absorb more energy and the energy absorption of specimens are increased by increasing the shore of rubbers. In comparison to the empty tube, the first fold for the rubber-filled tubes occurs at lower load and it can be concluded that the rubber-filled tubes are better energy absorbers than the empty tubes. Also, in contrast with the empty tubes, the tubes that were filled with lower rubber shore deform asymmetrically.Keywords: axial compression, quasi-static loading, folding, energy absorbers, rubber-filled tubes
Procedia PDF Downloads 428956 Investigating Translations of Websites of Pakistani Public Offices
Authors: Sufia Maroof
Abstract:
This empirical study investigated the web-translations of five Pakistani public offices (FPSC, FIA, HEC, USB, and Ministry of Finance) offering Urdu tab as an option to access information on their official websites. Triangulation of quantitative and qualitative research design informed the researcher of the semantic, lexical and syntactic caveats in these translations. The study hypothesized that majority of the Pakistani population is oblivious of the Supreme Court’s amendments in language policy concerning national and official language; hence, Urdu web-translations of the public departments have not been accessed effectively. Firstly, the researcher conducted an online survey, comprising of two sections, close ended and short answer based questions. Secondly, the researcher compiled corpus of the five selected websites in a tabular form to compare the data. Thirdly, the administrators of the departments had been contacted regarding the methods of translation and the expertise of the personnel involved. The corpus was assessed for TQA after examining the lexical, semantic, syntactical and technical alignment inaccuracies and imperfections. The study suggests the public offices to invest in their Urdu webs by either hiring expert translators or engaging expertise of a translation agency for this project to offer quality translation to public.Keywords: machine translations, public offices, Urdu translations, websites
Procedia PDF Downloads 126955 Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine
Authors: Saim Iftikhar Awan, Farhan Ali
Abstract:
Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.Keywords: computational analysis, power efficiency, wind energy, wind turbine
Procedia PDF Downloads 157954 Nanowire Substrate to Control Differentiation of Mesenchymal Stem Cells
Authors: Ainur Sharip, Jose E. Perez, Nouf Alsharif, Aldo I. M. Bandeas, Enzo D. Fabrizio, Timothy Ravasi, Jasmeen S. Merzaban, Jürgen Kosel
Abstract:
Bone marrow-derived human mesenchymal stem cells (MSCs) are attractive candidates for tissue engineering and regenerative medicine, due to their ability to differentiate into osteoblasts, chondrocytes or adipocytes. Differentiation is influenced by biochemical and biophysical stimuli provided by the microenvironment of the cell. Thus, altering the mechanical characteristics of a cell culture scaffold can directly influence a cell’s microenvironment and lead to stem cell differentiation. Mesenchymal stem cells were cultured on densely packed, vertically aligned magnetic iron nanowires (NWs) and the effect of NWs on the cell cytoskeleton rearrangement and differentiation were studied. An electrochemical deposition method was employed to fabricate NWs into nanoporous alumina templates, followed by a partial release to reveal the NW array. This created a cell growth substrate with free-standing NWs. The Fe NWs possessed a length of 2-3 µm, with each NW having a diameter of 33 nm on average. Mechanical stimuli generated by the physical movement of these iron NWs, in response to a magnetic field, can stimulate osteogenic differentiation. Induction of osteogenesis was estimated using an osteogenic marker, osteopontin, and a reduction of stem cell markers, CD73 and CD105. MSCs were grown on the NWs, and fluorescent microscopy was employed to monitor the expression of markers. A magnetic field with an intensity of 250 mT and a frequency of 0.1 Hz was applied for 12 hours/day over a period of one week and two weeks. The magnetically activated substrate enhanced the osteogenic differentiation of the MSCs compared to the culture conditions without magnetic field. Quantification of the osteopontin signal revealed approximately a seven-fold increase in the expression of this protein after two weeks of culture. Immunostaining staining against CD73 and CD105 revealed the expression of antibodies at the earlier time point (two days) and a considerable reduction after one-week exposure to a magnetic field. Overall, these results demonstrate the application of a magnetic NW substrate in stimulating the osteogenic differentiation of MSCs. This method significantly decreases the time needed to induce osteogenic differentiation compared to commercial biochemical methods, such as osteogenic differentiation kits, that usually require more than two weeks. Contact-free stimulation of MSC differentiation using a magnetic field has potential uses in tissue engineering, regenerative medicine, and bone formation therapies.Keywords: cell substrate, magnetic nanowire, mesenchymal stem cell, stem cell differentiation
Procedia PDF Downloads 194953 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior
Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).Keywords: urban mobility, decongestion, machine learning, neural network
Procedia PDF Downloads 192952 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts
Authors: Nety Trisnawaty, Mirna Febriani
Abstract:
The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts
Procedia PDF Downloads 278951 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites
Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash
Abstract:
When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test
Procedia PDF Downloads 91950 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 154