Search results for: modeling and optimization
4275 The Effect of Sexual Assault on Sport Participation Trajectories from Adolescence through Young Adulthood
Authors: Chung Gun Lee
Abstract:
Objectives: Certain life change events were shown to have strong effects on physical activity-related behavior, but more research is needed to investigate the longer-term effects of different life change events on physical activity-related behaviors. The purpose of this study is to examine the effect of experiencing physically or non-physically forced sexual activity on sports participation from adolescence to young adulthood. Methods: This study used the National Longitudinal Study of Adolescent Health (Add Health) data. Group-based trajectory modeling was utilized to examine the effect of experiencing sexual assault on trajectories of sports participation from adolescence to young adulthood. Results: Male participants were divided into three trajectory groups (i.e., Low-stable, High-decreasing, and High-stable) and female participants were divided into two trajectory groups (i.e., Low-stable and High-decreasing). The main finding of this study is that women who experienced non-physically forced sexual activity significantly decreases sports participation throughout the trajectory in ‘High-decreasing group.’ The effect of non-physically forced sexual activity on women’s sports participation was considerably weakened and became insignificant after including psychological depression in the model as a potential mediator. Discussion: Special attention should be paid to sport participation among women victims of non-physically forced sexual activity. Further studies are needed to examine other potential mediators in addition to psychological depression when examining the effect of non-physically forced sexual activity on sport participation in women.Keywords: adolescent, group-based trajectory modeling, sexual assault, young adult
Procedia PDF Downloads 1624274 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures
Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar
Abstract:
Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses
Procedia PDF Downloads 5284273 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method
Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya
Abstract:
This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.Keywords: particle size reduction, micromixer, FDM modelling, wet etching
Procedia PDF Downloads 4314272 Experimental and Theoretical Studies: Biochemical Properties of Honey on Type 2 Diabetes
Authors: Said Ghalem
Abstract:
Honey is primarily composed of sugars: glucose and fructose. Depending honey, it's either fructose or glucose predominates. More the fructose concentration and the less the glycemic index (GI) is high. Thus, changes in the insulin response shows a decrease of the amount of insulin secreted at an increased fructose honey. Honey is also a compound that can reduce the lipid in the blood. Several studies on animals, but which remain to be checked in humans, have shown that the honey can have interesting effects when combined with other molecules: associated with Metformin (a medicine taken by diabetics), it shows the benefits and effects of diabetes preserves the tissue; associated ginger, it increases the antioxidant activity and thus avoids neurologic complications, neuropathic. Molecular modeling techniques are widely used in chemistry, biology, and the pharmaceutical industry. Most of the currently existing drugs target enzymes. Inhibition of DPP-4 is an important approach in the treatment of type 2 diabetes. We have chosen for the inhibition of DPP-4 the following molecules: Linagliptin (BI1356), Sitagliptin (Januvia), Vildagliptin, Saxagliptin, Alogliptin, and Metformin (Glucophage), that are involved in the disease management of type 2 diabetes and added to honey. For this, we used software Molecular Operating Environment. A Wistar rat study was initiated in our laboratory with a well-studied protocol; after sacrifice, according to international standards and respect for the animal This theoretical approach predicts the mode of interaction of a ligand with its target. The honey can have interesting effects when combined with other molecules, it shows the benefits and effects of honey preserves the tissue, it increases the antioxidant activity, and thus avoids neurologic complications, neuropathic or macrovascular. The organs, especially the kidneys of Wistar, shows that the parameters to renal function let us conclude that damages caused by diabetes are slightly perceptible than those observed without the addition of a high concentration of fructose honey.Keywords: honey, molecular modeling, DPP4 enzyme, metformin
Procedia PDF Downloads 984271 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing
Authors: Paramvir Singh
Abstract:
The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles
Procedia PDF Downloads 904270 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems
Authors: Georgi Y. Georgiev, Matthew Brouillet
Abstract:
This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.Keywords: complexity, self-organization, agent based modelling, efficiency
Procedia PDF Downloads 684269 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence
Procedia PDF Downloads 4634268 Building Successful Organizational Business Communication and Its Impact on Business Performance: An Intra- and Inter-Organizational Perspective
Authors: Aynura Valiyeva, Basil John Thomas
Abstract:
Intra-firm communication is critical for building synergy amongst internal business units of a firm, where employees from various functional departments and ranks incorporate their decision-making, understanding of organizational objectives, as well as common norms and culture for better organizational effectiveness. This study builds on and assesses a framework of the causes and consequences of effective communication in business interactions between customer and supplier firms, and the path for efficient communication within a firm. The proposed study’s structural equation modeling (SEM) analysis based on 352 sample responses collected from firm representatives at different job positions ranging from marketing to logistics operations, reveals that, in the frame of reference of intra-organizational communication, organization characteristics and shared values, top management support and style of leadership, as well as information technology, are all significantly related to communication effectiveness. Furthermore, the frequency and variety of interactions enhance the outcome of communication, that improves a company’s performance. The results reveal that cultural factors are significantly related to communication effectiveness, as well as the shared beliefs and goals. In terms of organizational factors, leadership style, top management support and information technology are significant determinants of effective communication. Among the contextual factors, interaction frequency and diversity are found to be priority factors. This study also tests the relationship between supplier and supplier firm performance in the context of communication effectiveness, and finds that they are closely related, when trust and commitment is built between business partners. When firms do business in other multicultural contexts, language and shared values with destination country must be considered significant elements of communication process.Keywords: business performance, intra-firm communication, inter-firm communication, structural equation modeling
Procedia PDF Downloads 974267 Issues on Optimizing the Structural Parameters of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters
Procedia PDF Downloads 3454266 A Model for Operating Rooms Scheduling
Authors: Jose Francisco Ferreira Ribeiro, Alexandre Bevilacqua Leoneti, Andre Lucirton Costa
Abstract:
This paper presents a mathematical model in binary variables 0/1 to make the assignment of surgical procedures to the operating rooms in a hospital. The proposed mathematical model is based on the generalized assignment problem, which maximizes the sum of preferences for the use of the operating rooms by doctors, respecting the time available in each room. The corresponding program was written in Visual Basic of Microsoft Excel, and tested to schedule surgeries at St. Lydia Hospital in Ribeirao Preto, Brazil.Keywords: generalized assignment problem, logistics, optimization, scheduling
Procedia PDF Downloads 2924265 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia
Authors: Dhekra Khazri, Hakim Gabtni
Abstract:
Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector
Procedia PDF Downloads 2834264 Modeling Revolution Shell Structures by MATLAB Programming-Axisymmetric and Nonaxisymmetric Shells
Authors: Hamadi Djamal, Labiodh Bachir, Ounis Abdelhafid, Chaalane Mourad
Abstract:
The objective of this work is setting numerically operational finite element CAXI_L for the axisymmetric and nonaxisymmetric shells. This element is based on the Reissner-Mindlin theory and mixed model formulation. The MATLAB language is used for the programming. In order to test the elaborated program, some applications are carried out.Keywords: axisymmetric shells, nonaxisymmetric behaviour, finite element, MATLAB programming
Procedia PDF Downloads 3184263 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House
Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal
Abstract:
Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production
Procedia PDF Downloads 3374262 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters
Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang
Abstract:
Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology
Procedia PDF Downloads 694261 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method
Authors: Majid Yazdandoust
Abstract:
This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape
Procedia PDF Downloads 4854260 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model
Authors: N. Nivedita, S. Durbha
Abstract:
Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain
Procedia PDF Downloads 5294259 A Survey on Compression Methods for Table Constraints
Authors: N. Gharbi
Abstract:
Constraint Satisfaction problems are mathematical problems that are often used to model many real-world problems for which we look if there exists a solution satisfying all its constraints. Table constraints are important for modeling parts of many problems since they list all combinations of allowed or forbidden values. However, they admit practical limitations because they are sometimes too large to be represented in a direct way. In this paper, we present a survey of the different categories of the proposed approaches to compress table constraints in order to reduce both space and time complexities.Keywords: constraint programming, compression, data mining, table constraints
Procedia PDF Downloads 3254258 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education
Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke
Abstract:
This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education
Procedia PDF Downloads 174257 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation
Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell
Abstract:
Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models
Procedia PDF Downloads 1464256 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model
Authors: Jiachen Wang, Dongxu Ji
Abstract:
Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.Keywords: geothermal power generation, optimization, energy model, thermodynamics
Procedia PDF Downloads 684255 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization
Procedia PDF Downloads 3014254 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application
Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius
Abstract:
Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural
Procedia PDF Downloads 1424253 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 1564252 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model
Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay
Abstract:
In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics
Procedia PDF Downloads 3874251 SynKit: A Event-Driven and Scalable Microservices-Based Kitting System
Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro
Abstract:
The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0
Procedia PDF Downloads 244250 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor
Authors: Justas Dilys
Abstract:
ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.Keywords: unscented kalman filter, ARM, PMSM, implementation
Procedia PDF Downloads 1674249 Modeling of Timing in a Cyber Conflict to Inform Critical Infrastructure Defense
Authors: Brian Connett, Bryan O'Halloran
Abstract:
Systems assets within critical infrastructures were seemingly safe from the exploitation or attack by nefarious cyberspace actors. Now, critical infrastructure is a target and the resources to exploit the cyber physical systems exist. These resources are characterized in terms of patience, stealth, replication-ability and extraordinary robustness. System owners are obligated to maintain a high level of protection measures. The difficulty lies in knowing when to fortify a critical infrastructure against an impending attack. Models currently exist that demonstrate the value of knowing the attacker’s capabilities in the cyber realm and the strength of the target. The shortcomings of these models are that they are not designed to respond to the inherent fast timing of an attack, an impetus that can be derived based on open-source reporting, common knowledge of exploits of and the physical architecture of the infrastructure. A useful model will inform systems owners how to align infrastructure architecture in a manner that is responsive to the capability, willingness and timing of the attacker. This research group has used an existing theoretical model for estimating parameters, and through analysis, to develop a decision tool for would-be target owners. The continuation of the research develops further this model by estimating the variable parameters. Understanding these parameter estimations will uniquely position the decision maker to posture having revealed the vulnerabilities of an attacker’s, persistence and stealth. This research explores different approaches to improve on current attacker-defender models that focus on cyber threats. An existing foundational model takes the point of view of an attacker who must decide what cyber resource to use and when to use it to exploit a system vulnerability. It is valuable for estimating parameters for the model, and through analysis, develop a decision tool for would-be target owners.Keywords: critical infrastructure, cyber physical systems, modeling, exploitation
Procedia PDF Downloads 1924248 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability
Authors: S. Zhang, L. Zhang, X. Chen
Abstract:
Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.Keywords: failure probability, FRP, reliability, statistical correlation
Procedia PDF Downloads 1604247 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 1294246 An Approach to Automate the Modeling of Life Cycle Inventory Data: Case Study on Electrical and Electronic Equipment Products
Authors: Axelle Bertrand, Tom Bauer, Carole Charbuillet, Martin Bonte, Marie Voyer, Nicolas Perry
Abstract:
The complexity of Life Cycle Assessment (LCA) can be identified as the ultimate obstacle to massification. Due to these obstacles, the diffusion of eco-design and LCA methods in the manufacturing sectors could be impossible. This article addresses the research question: How to adapt the LCA method to generalize it massively and improve its performance? This paper aims to develop an approach for automating LCA in order to carry out assessments on a massive scale. To answer this, we proceeded in three steps: First, an analysis of the literature to identify existing automation methods. Given the constraints of large-scale manual processing, it was necessary to define a new approach, drawing inspiration from certain methods and combining them with new ideas and improvements. In a second part, our development of automated construction is presented (reconciliation and implementation of data). Finally, the LCA case study of a conduit is presented to demonstrate the feature-based approach offered by the developed tool. A computerized environment supports effective and efficient decision-making related to materials and processes, facilitating the process of data mapping and hence product modeling. This method is also able to complete the LCA process on its own within minutes. Thus, the calculations and the LCA report are automatically generated. The tool developed has shown that automation by code is a viable solution to meet LCA's massification objectives. It has major advantages over the traditional LCA method and overcomes the complexity of LCA. Indeed, the case study demonstrated the time savings associated with this methodology and, therefore, the opportunity to increase the number of LCA reports generated and, therefore, to meet regulatory requirements. Moreover, this approach also presents the potential of the proposed method for a wide range of applications.Keywords: automation, EEE, life cycle assessment, life cycle inventory, massively
Procedia PDF Downloads 90