Search results for: discrete-time queueing inventory model
14902 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 14214901 USA Commercial Pilots’ Views of Crew Resource Management, Social Desirability, and Safety Locus of Control
Authors: Stephen Vera, Tabitha Black, Charalambos Cleanthous, Ryan Sain
Abstract:
A gender comparison of USA commercial pilots’ demographics and views of CRM, social desirability and locus of control were surveyed. The Aviation safety locus of control (ASLOC) was used to measure external (ASLOC-E) or internal (ASLOC-I) aviation safety locus of control. The gender differences were explored using the ASLOC scores as a categorical variable. A differential comparison of crew resource management (CRM), based on the Federal Aviation Administration’s (FAA) guidelines was conducted. The results indicated that the proportion of female to male respondents matches the current ratio of USA commercial pilots. Moreover, there were no significant differences regarding overall education and the total number of communication classes one took. Regarding CRM issues, there were no significant differences on their views regarding the roles of the PIC, stress, time management, and managing a flight team. The females scored significantly lower on aeronautical decision making (ADM) and communications. There were no significant differences on either the Balanced Inventory of Desirable Responding (BIDR) impression management (IM) or self-deceptive enhancement (SDE). Although there were no overall significant differences on the ASLOC, the females did score higher on the internal subscale than did the males. An additional comparison of socially desirable responding indicates that all scores may be invalid, especially from the female respondents.Keywords: social desirability, safety locus of control, crew resource management, commercial pilots
Procedia PDF Downloads 26014900 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model
Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu
Abstract:
In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.Keywords: road edge lines extraction, energy function, intersection fracture, Snake model
Procedia PDF Downloads 34214899 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 14614898 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents
Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub
Abstract:
In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model
Procedia PDF Downloads 22614897 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure
Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu
Abstract:
This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; Compared with LIPS-200 life test data, the results of the numerical model are in reasonable agreement with the measured data. Finally, we predict the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrates that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.Keywords: ion thruster, accelerator gird, sputter erosion, lifetime assessment
Procedia PDF Downloads 56914896 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow
Authors: Alex Fedoseyev
Abstract:
This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow
Procedia PDF Downloads 6414895 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco
Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui
Abstract:
The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate
Procedia PDF Downloads 19314894 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 14714893 Robust Model Predictive Controller for Uncertain Nonlinear Wheeled Inverted Pendulum Systems: A Tube-Based Approach
Authors: Tran Gia Khanh, Dao Phuong Nam, Do Trong Tan, Nguyen Van Huong, Mai Xuan Sinh
Abstract:
This work presents the problem of tube-based robust model predictive controller for a class of continuous-time systems in the presence of input disturbances. The main objective is to point out the state trajectory of closed system being maintained inside a sequence of tubes. An estimation of attraction region of the closed system is pointed out based on input state stability (ISS) theory and linearized model in each time interval. The theoretical analysis and simulation results demonstrate the performance of the proposed algorithm for a wheeled inverted pendulum system.Keywords: input state stability (ISS), tube-based robust MPC, continuous-time nonlinear systems, wheeled inverted pendulum
Procedia PDF Downloads 22214892 Effects of Fishbone Creative Thinking Strategy on Problem-Solving Skills of Teaching Personnel in Ogun State, Nigeria
Authors: Olusegun Adeleke Adenuga
Abstract:
The study examined effect of fishbone creative thinking strategy on problem-solving skills of public teachers in Ogun state, Nigeria. A 2x2x2 factorial design was employed for the study which consisted of 80 participants made up of 40 male and 40 female public teachers randomly selected among public teaching personnel from the two local government area headquarters (Ijebu-ode and Ijebu-Igbo) within Ogun East Senatorial District. Each treatment group received 45minutes instructions and training per week for 8weeks. Data was collected from participants with the use of standardized instrument tagged ‘Problem Solving Inventory’ (PSI) developed by the researchers prior to the training to form a pre-test and immediately after eight weeks of training to form a post-test. One hypothesis was tested; the data obtained was analyzed using Analysis of Covariance (ANCOVA) tested at significance level of 0.05. The result of the data analysis shows that there was a significant effect of the fishbone creative thinking technique on the participants (F (2,99) = 12.410; p <.05). Based on the findings, it is therefore recommended that the report of this study be used to effect organizational change and development of teaching service in Nigeria through teachers’ retraining and capacity building.Keywords: fishbone, creative thinking strategy, and problem-solving skills, public teachers
Procedia PDF Downloads 36014891 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output
Procedia PDF Downloads 6814890 Fashion, Art and Culture in the Anthropological Management Model
Authors: Lucia Perez, Maria Gaton y Santa Palella
Abstract:
Starting from the etymology of the word culture, the Latin term ‘colere’, whose meaning is to cultivate, we understand that the society that cultivates its knowledge is laying the foundations for new possibilities. In this sense, art and fashion contain the same attributes: concept, aesthetic principles, and refined techniques. Both play a crucial role, communication, and this implies a sense of community, relationship with tradition, and innovation. This is the mirror in which to contemplate, but also the space that helps to grow. This is the framework where our object of study opens up: the anthropological management or the mission management model applied to fashion exhibitions in museums and cultural institutions. For this purpose, a bibliographic review has been carried out with its subsequent analysis, a case study of three successful exhibitions: ‘Christian Dior: designer of dreams’, ‘Balenciaga and the Spanish painting’, and ‘China: Through the Looking Glass’. The methodology has been completed with interviews focused on the curators. Amongst the results obtained, it is worth highlighting the fundamental role of transcendent leadership, which, in addition to being results-oriented, must align the motivations of the collaborators with the mission. The anthropological management model conceives management as a service, and it is oriented to the interests of the staff and the public, in short, of the person; this is what enables the objectives of effectiveness, efficiency, and social value to be achieved; dimensions, all necessary for the proper development of the mission of the exhibitions. Fashion, understood as art, is at the service of culture, and therefore of the human being, which defines a transcendent mission. We conclude that the profile of an anthropological management model applied to fashion exhibitions in museums is the ideal one to achieve the purpose of these institutions.Keywords: art, culture, fashion, anthropological model, fashion exhibitions
Procedia PDF Downloads 10614889 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover
Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein
Abstract:
A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory
Procedia PDF Downloads 57014888 Integrated Model for Enhancing Data Security Performance in Cloud Computing
Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali
Abstract:
Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish
Procedia PDF Downloads 48214887 Saliency Detection Using a Background Probability Model
Authors: Junling Li, Fang Meng, Yichun Zhang
Abstract:
Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.Keywords: visual saliency, background probability, boundary knowledge, background priors
Procedia PDF Downloads 43314886 An Experimental Investigation into Fluid Forces on Road Vehicles in Unsteady Flows
Abstract:
In this research, the effect of unsteady flows acting on road vehicles was experimentally investigated, using an advanced and recently introduced wind tunnel. The aims of this study were to extract the characteristics of fluid forces acting on road vehicles under unsteady wind conditions and obtain new information on drag forces in a practical on-road test. We applied pulsating wind as a representative example of the atmospheric fluctuations that vehicles encounter on the road. That is, we considered the case where the vehicles are moving at constant speed in the air, with large wind oscillations. The experimental tests were performed on the Ahmed-type test model, which is a simplified vehicle model. This model was chosen because of its simplicity and the data accumulated under steady wind conditions. The experiments were carried out with a time-averaged Reynolds number of Re = 4.16x10⁵ and a pulsation period of T = 1.5 s, with amplitude of η = 0.235. Unsteady fluid forces of drag and lift were obtained utilizing a multi-component load cell. It was observed that the unsteady aerodynamic forces differ significantly from those under steady wind conditions. They exhibit a phase shift and an enhanced response to the wind oscillations. Furthermore, their behavior depends on the slant angle of the rear shape of the model.Keywords: Ahmed body, automotive aerodynamics, unsteady wind, wind tunnel test
Procedia PDF Downloads 29614885 Concrete Mixes for Sustainability
Authors: Kristyna Hrabova, Sabina Hüblova, Tomas Vymazal
Abstract:
Structural design of concrete structure has the result in qualities of structural safety and serviceability, together with durability, robustness, sustainability and resilience. A sustainable approach is at the heart of the research agenda around the world, and the Fibrillation Commission is also working on a new model code 2020. Now it is clear that the effects of mechanical, environmental load and even social coherence need to be reflected and included in the designing and evaluating structures. This study aimed to present the methodology for the sustainability assessment of various concrete mixtures.Keywords: concrete, cement, sustainability, Model Code 2020
Procedia PDF Downloads 18114884 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach
Authors: Adeep Hande, Shubham Agarwal
Abstract:
This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.Keywords: large language models, semi-supervised learning, sexism detection, data sparsity
Procedia PDF Downloads 7214883 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling
Authors: Taehan Bae
Abstract:
In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm
Procedia PDF Downloads 22714882 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case
Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang
Abstract:
In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination
Procedia PDF Downloads 9514881 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR
Authors: Pascal Mwenge, Tumisang Seodigeng
Abstract:
The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR
Procedia PDF Downloads 15214880 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 1614879 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System
Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi
Abstract:
Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model
Procedia PDF Downloads 20814878 Evidence of Conditional and Unconditional Cooperation in a Public Goods Game: Experimental Evidence from Mali
Authors: Maria Laura Alzua, Maria Adelaida Lopera
Abstract:
This paper measures the relative importance of conditional cooperation and unconditional cooperation in a large public goods experiment conducted in Mali. We use expectations about total public goods provision to estimate a structural choice model with heterogeneous preferences. While unconditional cooperation can be captured by common preferences shared by all participants, conditional cooperation is much more heterogeneous and depends on unobserved individual factors. This structural model, in combination with two experimental treatments, suggests that leadership and group communication incentivize public goods provision through different channels. First, We find that participation of local leaders effectively changes individual choices through unconditional cooperation. A simulation exercise predicts that even in the most pessimistic scenario in which all participants expect zero public good provision, 60% would still choose to cooperate. Second, allowing participants to communicate fosters conditional cooperation. The simulations suggest that expectations are responsible for around 24% of the observed public good provision and that group communication does not necessarily ameliorate public good provision. In fact, communication may even worsen the outcome when expectations are low.Keywords: conditional cooperation, discrete choice model, expectations, public goods game, random coefficients model
Procedia PDF Downloads 31014877 A Generation Outside: Afghan Refugees in Greece 2003-2016
Authors: Kristina Colovic, Mari Janikian, Nikolaos Takis, Fotini-Sonia Apergi
Abstract:
A considerable number of Afghan asylum seekers in Greece are still waiting for answers about their future and status for personal, social and societal advancement. Most have been trapped in a stalemate of continuously postponed or temporarily progressed levels of integration into the EU/Greek process of asylum. Limited quantitative research exists investigating the psychological effects of long-term displacement among Afghans refugees in Greece. The purpose of this study is to investigate factors that are associated with and predict psychological distress symptoms among this population. Data from a sample of native Afghan nationals (N > 70) living in Greece for approximately the last ten years will be collected from May to July 2016. Criteria for participation include the following: being 18 years of age or older, and emigration from Afghanistan to Greece from 2003 onwards (i.e., long-term refugees or part of the 'old system of asylum'). Snowball sampling will be used to recruit participants, as this is considered the most effective option when attempting to study refugee populations. Participants will complete self-report questionnaires, consisting of the Afghan Symptom Checklist (ASCL), a culturally validated measure of psychological distress, the World Health Organization Quality of Life scale (WHOQOL-BREF), an adapted version of the Comprehensive Trauma Inventory-104 (CTI-104), and a modified Psychological Acculturation Scale. All instruments will be translated in Greek, through the use of forward- and back-translations by bilingual speakers of English and Greek, following WHO guidelines. A pilot study with 5 Afghan participants will take place to check for discrepancies in understanding and for further adapting the instruments as needed. Demographic data, including age, gender, year of arrival to Greece and current asylum status will be explored. Three different types of analyses (descriptive statistics, bivariate correlations, and multivariate linear regression) will be used in this study. Descriptive findings for respondent demographics, psychological distress symptoms, traumatic life events and quality of life will be reported. Zero-order correlations will assess the interrelationships among demographic, traumatic life events, psychological distress, and quality of life variables. Lastly, a multivariate linear regression model will be estimated. The findings from the study will contribute to understanding the determinants of acculturation, distress and trauma on daily functioning for Afghans in Greece. The main implications of the current study will be to advocate for capacity building and empower communities through effective program evaluation and design for mental health services for all refugee populations in Greece.Keywords: Afghan refugees, evaluation, Greece, mental health, quality of life
Procedia PDF Downloads 29014876 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements
Procedia PDF Downloads 31114875 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 50214874 Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform
Authors: Ravindra B. Patil, P. Krishnamoorthy, Shriram Sethuraman
Abstract:
This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.Keywords: distension waveform, Gaussian Mixture Model, RF ultrasound, arterial wall movement
Procedia PDF Downloads 50814873 Exploring Workaholism Determinants and Life Balance: A Mixed-Method Study Among Academic Nurse Educators
Authors: Ebtsam Aly Abou Hashish, Sharifah Abdulmuttalib Alsayed, Hend Abdu Alnajjar
Abstract:
Background: Academic nurse educators play a crucial role in the educational environment, but the demands of their profession can lead to workaholism, which could result in an imbalance between work and personal life. Purpose: The study aimed to explore workaholism and life balance among academic nursing educators, as well as investigate the factors associated with workaholism. Methods: A mixed-methods design based on the ‘concurrent triangulation’ approach was employed. A convenience sample of 76 nurse educators completed the Dutch Work Addiction Scale (DUWAS) and the Life Balance Inventory (LBI), while a purposive sample of 20 nurse educators participated in semi-structured interviews. Inferential statistics and thematic analysis were used to analyze the data. Results: The researchers found a notable prevalence of workaholism among nurse educators, with 59.0 % reporting a mean score above 2.5 and 86.8 % perceiving an unbalanced life. Regression analysis indicated that workaholism negatively predicted life balance (B = 0.404, p < 0.001). The qualitative findings derived three themes as determinants of workaholism: antecedents, consequences, and personal and institutional strategies to mitigate workaholism among nursing educators. Conclusion: Educational institutions should develop comprehensive approaches to support and develop their academicians, fostering a positive work environment, work-life balance, employee well-being, and professional development.Keywords: workaholism, life balance, academic nurse educators, mixed-method
Procedia PDF Downloads 29