Search results for: computational thinking
570 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 245569 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds
Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid
Abstract:
A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations
Procedia PDF Downloads 180568 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment
Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad
Abstract:
Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation
Procedia PDF Downloads 62567 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 148566 The Impact of Developing an Educational Unit in the Light of Twenty-First Century Skills in Developing Language Skills for Non-Arabic Speakers: A Proposed Program for Application to Students of Educational Series in Regular Schools
Authors: Erfan Abdeldaim Mohamed Ahmed Abdalla
Abstract:
The era of the knowledge explosion in which we live requires us to develop educational curricula quantitatively and qualitatively to adapt to the twenty-first-century skills of critical thinking, problem-solving, communication, cooperation, creativity, and innovation. The process of developing the curriculum is as significant as building it; in fact, the development of curricula may be more difficult than building them. And curriculum development includes analyzing needs, setting goals, designing the content and educational materials, creating language programs, developing teachers, applying for programmes in schools, monitoring and feedback, and then evaluating the language programme resulting from these processes. When we look back at the history of language teaching during the twentieth century, we find that developing the delivery method is the most crucial aspect of change in language teaching doctrines. The concept of delivery method in teaching is a systematic set of teaching practices based on a specific theory of language acquisition. This is a key consideration, as the process of development must include all the curriculum elements in its comprehensive sense: linguistically and non-linguistically. The various Arabic curricula provide the student with a set of units, each unit consisting of a set of linguistic elements. These elements are often not logically arranged, and more importantly, they neglect essential points and highlight other less important ones. Moreover, the educational curricula entail a great deal of monotony in the presentation of content, which makes it hard for the teacher to select adequate content; so that the teacher often navigates among diverse references to prepare a lesson and hardly finds the suitable one. Similarly, the student often gets bored when learning the Arabic language and fails to fulfill considerable progress in it. Therefore, the problem is not related to the lack of curricula, but the problem is the development of the curriculum with all its linguistic and non-linguistic elements in accordance with contemporary challenges and standards for teaching foreign languages. The Arabic library suffers from a lack of references for curriculum development. In this paper, the researcher investigates the elements of development, such as the teacher, content, methods, objectives, evaluation, and activities. Hence, a set of general guidelines in the field of educational development were reached. The paper highlights the need to identify weaknesses in educational curricula, decide the twenty-first-century skills that must be employed in Arabic education curricula, and the employment of foreign language teaching standards in current Arabic Curricula. The researcher assumes that the series of teaching Arabic to speakers of other languages in regular schools do not address the skills of the twenty-first century, which is what the researcher tries to apply in the proposed unit. The experimental method is the method of this study. It is based on two groups: experimental and control. The development of an educational unit will help build suitable educational series for students of the Arabic language in regular schools, in which twenty-first-century skills and standards for teaching foreign languages will be addressed and be more useful and attractive to students.Keywords: curriculum, development, Arabic language, non-native, skills
Procedia PDF Downloads 84565 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers
Authors: H. Asadi, H. Naderan Tahan
Abstract:
The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics
Procedia PDF Downloads 289564 Monitoring and Evaluation of Master Science Trainee Educational Students to their Practicum in Teaching Physics for Improving and Creating Attitude Skills for Sustainable Developing Upper Secondary Students in Thailand
Authors: T. Santiboon, S. Tongbu, P. S. Saihong
Abstract:
This study focuses on investigating students' perceptions of their physics classroom learning environments of their individualizations and their interactions with the instructional practicum in teaching physics of the master science trainee educational students for improving and creating attitude skills’ sustainable development toward physics for upper secondary educational students in Thailand. Associations between these perceptions and students' attitudes toward physics were also determined. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI) modified from the original Science Laboratory Environment Inventory. The 25-item Individualized Classroom Environment Questionnaire (ICEQ) was assessed those dimensions which distinguish individualized physics classrooms from convention on individualized open and inquiry-based education Teacher-student interactions were assessed with the 48-item Questionnaires on Teacher Interaction (QTI). Both these questionnaires have an Actual Form (assesses the class as it actually is) and a Preferred Form (asks the students what they would prefer their class to be like - the ideal situation). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA) The questionnaires were administered in three phases with the Custer Random Sampling technique to a sample consisted of 989 students in 28 physics classes from 10 schools at the grade 10, 11, and 12 levels in the Secondary Educational Service Area 26 (Maha Sarakham Province) and Area 27 (Roi-Et). Statistically significant differences were found between the students' perceptions of actual-1, actual-2 and preferred environments of their physics laboratory and distinguish individualized classrooms, and teacher interpersonal behaviors with their improving and creating attitudes skills’ sustainable development to their physics classes also were found. Predictions of the monitoring and evaluation of master science trainee educational students of their practicum in teaching physics; students’ skills developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%,science trainee educational students of their practicum in teaching physics; students’ skill developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%, 63%, and 72% for the ICEQ, and 38%, 59%, and 68% for the QTI in physics environment classes were attributable to their perceptions of their actual and preferred physics environments and their developing creative science skills’ sustainable toward physics, consequently. Based on all the findings, suggestions for improving the physics laboratory and individualized classes and teacher interpersonal behaviors with students' perceptions are provided of their improving and creating attitude skills’ sustainable development by the master science trainee educational students ’ instructional administrations.Keywords: promotion, instructional model, qualitative method, reflective thinking, trainee teacher student
Procedia PDF Downloads 268563 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent
Authors: Vatsal M. Patel, Navin B. Patel
Abstract:
The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave
Procedia PDF Downloads 161562 Scientific Development as Diffusion on a Social Network: An Empirical Case Study
Authors: Anna Keuchenius
Abstract:
Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.Keywords: diffusion of innovations, network analysis, scientific development, sociology of science
Procedia PDF Downloads 305561 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function
Procedia PDF Downloads 307560 Implementation of Project-Based Learning with Peer Assessment in Large Classes under Consideration of Faculty’s Scare Resources
Authors: Margit Kastner
Abstract:
To overcome the negative consequences associated with large class sizes and to support students in developing the necessary competences (e.g., critical thinking, problem-solving, or team-work skills) a marketing course has been redesigned by implementing project-based learning with peer assessment (PBL&PA). This means that students can voluntarily take advantage of this supplementary offer and explore -in addition to attending the lecture where clicker questions are asked- a real-world problem, find a solution, and assess the results of peers while working in small collaborative groups. In order to handle this with little further effort, the process is technically supported by the university’s e-learning system in such a way that students upload their solution in form of an assignment which is then automatically distributed to peer groups who have to assess the work of three other groups. Finally, students’ work is graded automatically considering both, students’ contribution to the project and the conformity of the peer assessment. The purpose of this study is to evaluate students’ perception of PBL&PA using an online-questionnaire to collect the data. More specifically, it aims to discover students’ motivations for (not) working on a project and the benefits and problems students encounter. In addition to the survey, students’ performance was analyzed by comparing the final grades of those who participated in PBL&PA with those who did not participate. Among the 260 students who filled out the questionnaire, 47% participated in PBL&PA. Besides extrinsic motivations (bonus credits), students’ participation was often motivated by learning and social benefits. Reasons for not working on a project were connected to students’ organization and management of their studies (e.g., time constraints, no/wrong information) and teamwork concerns (e.g., missing engagement of peers, prior negative experiences). In addition, high workload and insufficient extrinsic motivation (bonus credits) were mentioned. With regards to benefits and problems students encountered during the project, students provided more positive than negative comments. Positive aspects most often stated were learning and social benefits while negative ones were mainly attached to the technical implementation. Interestingly, bonus credits were hardly named as a positive aspect meaning that intrinsic motivations have become more important when working on the project. Team aspects generated mixed feelings. In addition, students who voluntarily participated in PBL&PA were, in general, more active and utilized further course offers such as clicker questions. Examining students’ performance at the final exam revealed that students without participating in any of the offered active learning tasks performed poorest in the exam while students who used all activities were best. In conclusion, the goals of the implementation were met in terms of students’ perceived benefits and the positive impact on students’ exam performance. Since the comparison of the automatic grading with faculty grading showed valid results, it is possible to rely only on automatic grading in the future. That way, the additional workload for faculty will be within limits. Thus, the implementation of project-based learning with peer assessment can be recommended for large classes.Keywords: automated grading, large classes, peer assessment, project-based learning
Procedia PDF Downloads 165559 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 497558 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling
Authors: Ahmad Odeh
Abstract:
Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.Keywords: BIM, lifecycle energy assessment, building automation, energy conservation
Procedia PDF Downloads 189557 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors
Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar
Abstract:
In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides
Procedia PDF Downloads 139556 The Role of Academic Leaders at Jerash University in Crises Management 'Virus Corona as a Model'
Authors: Khaled M. Hama, Mohammed Al Magableh, Zaid Al Kuri, Ahmad Qayam
Abstract:
The study aimed to identify the role of academic leaders at Jerash University in crisis management from the faculty members' point of view, ‘the emerging Corona pandemic as a model’, as well as to identify the differences in the role of academic leaders at Jerash University in crisis management at the significance level (0.05 ≤ α) according to the study variables Gender Academic rank, years of experience, and identifying proposals that contribute to developing the performance of academic leaders at Jerash University in crisis management, ‘the Corona pandemic as a model’. The study was applied to a randomly selected sample of (72) faculty members at Jerash University, The researcher designed a tool for the study, which is the questionnaire, and it included two parts: the first part related to the personal data of the study sample members, and the second part was divided into five areas and (34) paragraphs to reveal the role of academic leaders at Jerash University in crisis management - the Corona pandemic as a model, it was confirmed From the validity and reliability of the tool, the study used the descriptive analytical method The study reached the following results: that the role of academic leaders at Jerash University in crisis management from the point of view of faculty members, ‘the emerging corona pandemic as a model’, came to a high degree, and there were no statistically significant differences at the level of statistical significance (α = 0.05) between the computational circles for the estimates of individuals The study sample for the role of academic leaders at Jerash University in crisis management is attributed to the study variables (gender, academic rank, and years of experience)Keywords: academic leaders, crisis management, corona pandemic, Jerash University
Procedia PDF Downloads 54555 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System
Authors: Deyu Zhou, Xiao Xue, Lizhen Cui
Abstract:
With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks
Procedia PDF Downloads 79554 Analysis of Exploitation Damages of the Frame Scaffolding
Authors: A. Robak, M. Pieńko, E. Błazik-Borowa, J. Bęc, I. Szer
Abstract:
The analyzes and classifications presented in the article were based on the research carried out in year 2016 and 2017 on a group of nearly one hundred scaffoldings assembled and used on construction sites in different parts of Poland. During scaffolding selection process efforts were made to maintain diversification in terms of parameters such as scaffolding size, investment size, type of investment, location and nature of conducted works. This resulted in the research being carried out on scaffoldings used for church renovation in a small town or attached to the facades of classic apartment blocks, as well as on scaffoldings used during construction of skyscrapers or facilities of the largest power plants. This variety allows to formulate general conclusions about the technical condition of used frame scaffoldings. Exploitation damages of the frame scaffolding elements were divided into three groups. The first group includes damages to the main structural components, which reduce the strength of the scaffolding elements and hence the whole structure. The qualitative analysis of these damages was made on the basis of numerical models that take into account the geometry of the damage and on the basis of computational nonlinear static analyzes. The second group focuses on exploitation damages such as the lack of a pin on the guardrail bolt which may cause an imminent threat to people using scaffolding. These are local damages that do not affect the bearing capacity and stability of the whole structure but are very important for safe use. The last group consider damages that reduce only aesthetic values and do not have direct impact on bearing capacity and safety of use. Apart from qualitative analyzes the article will present quantitative analyzes showing how frequently given type of damage occurs.Keywords: scaffolding, damage, safety, numerical analysis
Procedia PDF Downloads 259553 Innocent Victims and Immoral Women: Sex Workers in the Philippines through the Lens of Mainstream Media
Authors: Sharmila Parmanand
Abstract:
This paper examines dominant media representations of prostitution in the Philippines and interrogates sex workers’ interactions with the media establishment. This analysis of how sex workers are constituted in media, often as both innocent victims and immoral actors, contributes to an understanding of public discourse on sex work in the Philippines, where decriminalisation has recently been proposed and sex workers are currently classified as potential victims under anti-trafficking laws but also as criminals under the penal code. The first part is an analysis of media coverage of two prominent themes on prostitution: first, raid and rescue operations conducted by law enforcement; and second, prostitution on military bases and tourism hotspots. As a result of pressure from activists and international donors, these two themes often define the policy conversations on sex work in the Philippines. The discourses in written and televised news reports and documentaries from established local and international media sources that address these themes are explored through content analysis. Conclusions are drawn based on specific terms commonly used to refer to sex workers, how sex workers are seen as performing their cultural roles as mothers and wives, how sex work is depicted, associations made between sex work and public health, representations of clients and managers and ‘rescuers’ such as the police, anti-trafficking organisations, and faith-based groups, and which actors are presumed to be issue experts. Images of how prostitution is used as a metaphor for relations between the Philippines and foreign nations are also deconstructed, along with common tropes about developing world female subjects. In general, sex workers are simultaneously portrayed as bad mothers who endanger their family’s morality but also as long-suffering victims who endure exploitation for the sake of their children. They are also depicted as unclean, drug-addicted threats to public health. Their managers and clients are portrayed as cold, abusive, and sometimes violent, and their rescuers as moral and altruistic agents who are essential for sex workers’ rehabilitation and restoration as virtuous citizens. The second part explores sex workers’ own perceptions of their interactions with media, through interviews with members of the Philippine Sex Workers Collective, a loose organisation of sex workers around the Philippines. They reveal that they are often excluded by media practitioners and that they do not feel that they have space for meaningful self-revelation about their work when they do engage with journalists, who seem to have an overt agenda of depicting them as either victims or women of loose morals. In their assessment, media narratives do not necessarily reflect their lived experiences, and in some cases, coverage of rescues and raid operations endangers their privacy and instrumentalises their suffering. Media representations of sex workers may produce subject positions such as ‘victims’ or ‘criminals’ and legitimize specific interventions while foreclosing other ways of thinking. Further, in light of media’s power to reflect and shape public consciousness, it is a valuable academic and political project to examine whether sex workers are able to assert agency in determining how they are represented.Keywords: discourse analysis, news media, sex work, trafficking
Procedia PDF Downloads 393552 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 356551 Effect of Depth on Texture Features of Ultrasound Images
Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes
Abstract:
In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering
Procedia PDF Downloads 295550 Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility
Authors: Jadon Matthiasa, Cindy Donga, Ali Al Jibouria, Hsin Kuo
Abstract:
The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity.Keywords: air emissions, Gaussian Plume Model, MATLAB, soil contamination, air pollution monitoring, waste-to-energy, pollutant dispersion visualization, heavy metal analysis, environmental impact assessment, emission control effectiveness
Procedia PDF Downloads 16549 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 151548 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine
Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup
Procedia PDF Downloads 265547 Analyzing Emerging Scientific Domains in Biomedical Discourse: Case Study Comparing Microbiome, Metabolome, and Metagenome Research in Scientific Articles
Authors: Kenneth D. Aiello, M. Simeone, Manfred Laubichler
Abstract:
It is increasingly difficult to analyze emerging scientific fields as contemporary scientific fields are more dynamic, their boundaries are more porous, and the relational possibilities have increased due to Big Data and new information sources. In biomedicine, where funding, medical categories, and medical jurisdiction are determined by distinct boundaries on biomedical research fields and definitions of concepts, ambiguity persists between the microbiome, metabolome, and metagenome research fields. This ambiguity continues despite efforts by institutions and organizations to establish parameters on the core concepts and research discourses. Further, the explosive growth of microbiome, metabolome, and metagenomic research has led to unknown variation and covariation making application of findings across subfields or coming to a consensus difficult. This study explores the evolution and variation of knowledge within the microbiome, metabolome, and metagenome research fields related to ambiguous scholarly language and commensurable theoretical frameworks via a semantic analysis of key concepts and narratives. A computational historical framework of cultural evolution and large-scale publication data highlight the boundaries and overlaps between the competing scientific discourses surrounding the three research areas. The results of this study highlight how discourse and language distribute power within scholarly and scientific networks, specifically the power to set and define norms, central questions, methods, and knowledge.Keywords: biomedicine, conceptual change, history of science, philosophy of science, science of science, sociolinguistics, sociology of knowledge
Procedia PDF Downloads 130546 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 128545 Creating an Impact through Environmental Law and Policy with a Focus on Environmental Science Restoration with Social Impacts
Authors: Lauren Beth Birney
Abstract:
BOP-CCERS is a consortium of scientists, K-16 New York City students, faculty, academicians, teachers, stakeholders, STEM Industry professionals, CBO’s, NPO’s, citizen scientists, and local businesses working in partnership to restore New York Harbor’s oyster populations while at the same time providing clean water in New York Harbor. BOP-CCERS gives students an opportunity to learn hands-on about environmental stewardship as well as environmental law and policy by giving students real responsibility. The purpose of this REU will allow for the BOP CCERS Project to further broaden its parameters into the focus of environmental law and policy where further change can be affected. Creating opportunities for undergraduates to work collaboratively with graduate students in law and policy and envision themselves in STEM careers in the field of law continues to be of importance in this project. More importantly, creating opportunities for underrepresented students to pursue careers in STEM Education has been a goal of the project over the last ten years. By raising the level of student interest in community-based citizen science integrated into environmental law and policy, a more diversified workforce will be fostered through the momentum of this dynamic program. The continuing climate crisis facing our planet calls for 21st-century skill development that includes learning and innovation skills derived from critical thinking, which will help REU students address the issues of climate change facing our planet. The demand for a climate-friendly workforce will continue to be met through this community-based citizen science effort. Environmental laws and policies play a crucial role in protecting humans, animals, resources, and habitats. Without these laws, there would be no regulations concerning pollution or contamination of our waterways. Environmental law serves as a mechanism to protect the land, air, water, and soil of our planet. To protect the environment, it is crucial that future policymakers and legal experts both understand and value the importance of environmental protection. The Environmental Law and Policy REU provides students with the opportunity to learn, through hands-on work, the skills, and knowledge needed to help foster a legal workforce centered around environmental protection while participating alongside the BOP CCERS researchers in order to gain research experience. Broadening this area to law and policy will further increase these opportunities and permit students to ultimately affect and influence larger-scale change on a global level while further diversifying the STEM workforce. Students’ findings will be shared at the annual STEM Institute at Pace University in August 2022. Basic research methodologies include qualitative and quantitative analysis performed by the research team. Early findings indicate that providing students with an opportunity to experience, explore and participate in environmental science programs such as these enhances their interests in pursuing STEM careers in Law and Policy, with the focus being on providing opportunities for underserved, marginalized, and underrepresented populations.Keywords: environmental restoration science, citizen science, environmental law and policy, STEM education
Procedia PDF Downloads 102544 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study
Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan
Abstract:
Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation
Procedia PDF Downloads 225543 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: dam-break, discontinuous Galerkin scheme, flood modeling, shallow water equations
Procedia PDF Downloads 175542 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling
Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines
Abstract:
The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances
Procedia PDF Downloads 155541 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS
Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong
Abstract:
With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition
Procedia PDF Downloads 369