Search results for: initial design process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26443

Search results for: initial design process

973 Curriculum Transformation: Multidisciplinary Perspectives on ‘Decolonisation’ and ‘Africanisation’ of the Curriculum in South Africa’s Higher Education

Authors: Andre Bechuke

Abstract:

The years of 2015-2017 witnessed a huge campaign, and in some instances, violent protests in South Africa by students and some groups of academics advocating the decolonisation of the curriculum of universities. These protests have forced through high expectations for universities to teach a curriculum relevant to the country, and the continent as well as enabled South Africa to participate in the globalised world. To realise this purpose, most universities are currently undertaking steps to transform and decolonise their curriculum. However, the transformation process is challenged and delayed by lack of a collective understanding of the concepts ‘decolonisation’ and ‘africanisation’ that should guide its application. Even more challenging is lack of a contextual understanding of these concepts across different university disciplines. Against this background, and underpinned in a qualitative research paradigm, the perspectives of these concepts as applied by different university disciplines were examined in order to understand and establish their implementation in the curriculum transformation agenda. Data were collected by reviewing the teaching and learning plans of 8 faculties of an institution of higher learning in South Africa and analysed through content and textual analysis. The findings revealed varied understanding and use of these concepts in the transformation of the curriculum across faculties. Decolonisation, according to the faculties of Law and Humanities, is perceived as the eradication of the Eurocentric positioning in curriculum content and the constitutive rules and norms that control thinking. This is not done by ignoring other knowledge traditions but does call for an affirmation and validation of African views of the world and systems of thought, mixing it with current knowledge. For the Faculty of Natural and Agricultural Sciences, decolonisation is seen as making the content of the curriculum relevant to students, fulfilling the needs of industry and equipping students for job opportunities. This means the use of teaching strategies and methods that are inclusive of students from diverse cultures, and to structure the learning experience in ways that are not alien to the cultures of the students. For the Health Sciences, decolonisation of the curriculum refers to the need for a shift in Western thinking towards being more sensitive to all cultural beliefs and thoughts. Collectively, decolonisation of education thus entails that a nation must become independent with regard to the acquisition of knowledge, skills, values, beliefs, and habits. Based on the findings, for universities to successfully transform their curriculum and integrate the concepts of decolonisation and Africanisation, there is a need to contextually determine the meaning of the concepts generally and narrow them down to what they should mean to specific disciplines. Universities should refrain from considering an umbrella approach to these concepts. Decolonisation should be seen as a means and not an end. A decolonised curriculum should equally be developed based on the finest knowledge skills, values, beliefs and habits around the world and not limited to one country or continent.

Keywords: Africanisation, curriculum, transformation, decolonisation, multidisciplinary perspectives, South Africa’s higher education

Procedia PDF Downloads 155
972 Metaphors, Cognition, and Action: Conceptual Metaphor Analysis of President Akuffo-Addo’s Speeches in the COVID-19 Crisis

Authors: Isaac Kwabena Adubofour, Esther Serwaah Afreh

Abstract:

Political speeches are structured in ways that ensure that the ideology of the leader is communicated in ways that the opinions of the audience are influenced towards certain lines of action, and in crisis situations like the outbreak of a global pandemic, public opinion and action are influenced through speeches. The foregoing explains the presence of metaphors in presidential speeches. Crises require, among other things, that the thoughts, emotions, and actions of the population are controlled in dealing with the problems at hand. The primary question this study assesses is how the use of metaphors in crisis situations, like the COVID-19 pandemic, influences thought, determines the policies a government adopts, and influences the reactions of the people. The study focused on twenty-four (24) addresses of the President of Ghana, Nana Addo Danquah Akuffo-Addo, on the COVID-19 pandemic and his government’s efforts to manage the crisis. The nature and relevance of presidential speeches and the presence of metaphors in such speeches have been investigated. However, there is a paucity of research on the connection between the presence of metaphors in presidential speeches and their influence on thought and action. Especially within the crisis of the COVID-19 pandemic, it is pertinent to investigate how the presence of metaphors in presidential addresses influences social thought and action. Thus, the current study sought to investigate the potential for metaphor use to influence thought and action on a national scale during the COVID crisis. The speeches were collected from the website of the presidency. The analysis was done using Metaphor Identification Process by the Praglejazz Group (2007) with conceptual metaphor theory (Lakoff & Johnson, 1980) as the theoretical foundation. The findings of the study show that the President’s adoption of war metaphors may not have been ideal since it triggered thoughts, policies, and social actions in line with war. For instance, the reference to health workers as heroes, heroines, and frontline workers praised the efforts of these workers over the efforts of the rest of the population, and that may have contributed to the apathy that arose among the citizens in dealing with the pandemic. This prioritization of the frontline workers explains why their taxes were forgiven for a considerable period. The government further absorbed utility bills of citizens during the pandemic. All these financial commitments may not have been advisable for a developing country like Ghana, but the authors argue that the actions may have been influenced by the metaphor that was adopted. Another finding that is explored is the problem of stigmatization in the country during the pandemic and its connection with the war metaphor. This investigation expands the research on metaphors, social thought and action, and crisis communication. Its contribution to metaphor use, thought, and action suggest its potential implication for education and other fields.

Keywords: conceptual metaphor theory, COVID-19, crisis communication, presidential addresses, risk communication

Procedia PDF Downloads 98
971 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method

Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao

Abstract:

In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.

Keywords: defect levels, nanorods, photoluminescence, Raman modes

Procedia PDF Downloads 237
970 Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation

Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim

Abstract:

Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.

Keywords: alginate, carrageenan, rice bran, rice bran protein

Procedia PDF Downloads 278
969 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 143
968 Moving beyond Learner Outcomes: Culturally Responsive Recruitment, Training and Workforce Development

Authors: Tanya Greathosue, Adrianna Taylor, Lori Darnel, Eileen Starr, Susie Ryder, Julie Clockston, Dawn Matera Bassett, Jess Retrum

Abstract:

The United States has an identified need to improve the social work mental and behavioral health workforce shortage with a focus on culturally diverse and responsive mental and behavioral health practitioners to adequately serve its rapidly growing multicultural communities. The U.S. is experiencing rapid demographic changes. Ensuring that mental and behavioral health services are effective and accessible for diverse communities is essential for improving overall health outcomes. In response to this need, we developed a training program focused on interdisciplinary collaboration, evidence-based practices, and culturally responsive services. The success of the training program, funded by the Health Resource Service Administration (HRSA) Behavioral Health Workforce Education and Training (BHWET), has provided the foundation for stage two of our programming. In addition to HRSA/BHWET, we are receiving funding from Colorado Access, a state workforce development initiative, and Kaiser Permanente, a healthcare provider network in the United States. We have moved beyond improved learner outcomes to increasing recruitment of historically excluded, disproportionately mistreated learners, mentorship of students to improve retention, and successful, culturally responsive, diverse workforce development. These authors will utilize a pretest-posttest comparison group design and trend analysis to evaluate the success of the training program. Comparison groups will be matched based on age, gender identification, race, income, as well as prior experience in the field, and time in the degree program. This article describes our culturally responsive training program. Our goals are to increase the recruitment and retention of historically excluded, disproportionately mistreated learners. We achieve this by integrating cultural humility and sensitivity training into educational curricula for our scholars who participate in cohort classroom and seminar learning. Additionally, we provide our community partners who serve as internship sites with ongoing continuing education on how to promote and develop inclusive and supportive work environments for our learners. This work will be of value to mental and behavioral health care practitioners who serve historically excluded and mistreated populations. Participants will learn about culturally informed best practices to increase recruitment and retention of culturally diverse learners. Additionally, participants will hear how to create a culturally responsive training program that encourages an inclusive community for their learners through cohort learning, mentoring, community networking, and critical accountability.

Keywords: culturally diverse mental health practitioners, recruitment, mentorship, workforce development, underserved clinics, professional development

Procedia PDF Downloads 18
967 Examining the Critical Factors for Success and Failure of Common Ticketing Systems

Authors: Tam Viet Hoang

Abstract:

With a plethora of new mobility services and payment systems found in our cities and across modern public transportation systems, several cities globally have turned to common ticketing systems to help navigate this complexity. Helping to create time and space-differentiated fare structures and tariff schemes, common ticketing systems can optimize transport utilization rates, achieve cost efficiencies, and provide key incentives to specific target groups. However, not all cities and transportation systems have enjoyed a smooth journey towards the adoption, roll-out, and servicing of common ticketing systems, with both the experiences of success and failure being attributed to a wide variety of critical factors. Using case study research as a methodology and cities as the main unit of analysis, this research will seek to address the fundamental question of “what are the critical factors for the success and failure of common ticketing systems?” Using rail/train systems as the entry point for this study will start by providing a background to the evolution of transport ticketing and justify the improvements in operational efficiency that can be achieved through common ticketing systems. Examining the socio-economic benefits of common ticketing, the research will also help to articulate the value derived for different key identified stakeholder groups. By reviewing case studies of the implementation of common ticketing systems in different cities, the research will explore lessons learned from cities with the aim to elicit factors to ensure seamless connectivity integrated e-ticketing platforms. In an increasingly digital age and where cities are now coming online, this paper seeks to unpack these critical factors, undertaking case study research drawing from literature and lived experiences. Offering us a better understanding of the enabling environment and ideal mixture of ingredients to facilitate the successful roll-out of a common ticketing system, interviews will be conducted with transport operators from several selected cities to better appreciate the challenges and strategies employed to overcome those challenges in relation to common ticketing systems. Meanwhile, as we begin to see the introduction of new mobile applications and user interfaces to facilitate ticketing and payment as part of the transport journey, we take stock of numerous policy challenges ahead and implications on city-wide and system-wide urban planning. It is hoped that this study will help to identify the critical factors for the success and failure of common ticketing systems for cities set to embark on their implementation while serving to fine-tune processes in those cities where common ticketing systems are already in place. Outcomes from the study will help to facilitate an improved understanding of common pitfalls and essential milestones towards the roll-out of a common ticketing system for railway systems, especially for emerging countries where mass rapid transit transport systems are being considered or in the process of construction.

Keywords: common ticketing, public transport, urban strategies, Bangkok, Fukuoka, Sydney

Procedia PDF Downloads 75
966 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime

Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo

Abstract:

The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.

Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM

Procedia PDF Downloads 259
965 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 134
964 Carbon Dioxide Capture and Utilization by Using Seawater-Based Industrial Wastewater and Alkanolamine Absorbents

Authors: Dongwoo Kang, Yunsung Yoo, Injun Kim, Jongin Lee, Jinwon Park

Abstract:

Since industrial revolution, energy usage by human-beings has been drastically increased resulting in the enormous emissions of carbon dioxide into the atmosphere. High concentration of carbon dioxide is well recognized as the main reason for the climate change by breaking the heat equilibrium of the earth. In order to decrease the amount of carbon dioxide emission, lots of technologies have been developed. One of the methods is to capture carbon dioxide after combustion process using liquid type absorbents. However, for some nations, captured carbon dioxide cannot be treated and stored properly due to their geological structures. Also, captured carbon dioxide can be leaked out when crust activities are active. Hence, the method to convert carbon dioxide as stable and useful products were developed. It is usually called CCU, that is, Carbon Capture and Utilization. There are several ways to convert carbon dioxide into useful substances. For example, carbon dioxide can be converted and used as fuels such as diesel, plastics, and polymers. However, these types of technologies require lots of energy to make stable carbon dioxide into a reactive one. Hence, converting it into metal carbonates salts have been studied widely. When carbon dioxide is captured by alkanolamine-based liquid absorbents, it exists as ionic forms such as carbonate, carbamate, and bicarbonate. When adequate metal ions are added, metal carbonate salt can be produced by ionic reaction with fast reaction kinetics. However, finding metal sources can be one of the problems for this method to be commercialized. If natural resources such as calcium oxide were used to supply calcium ions, it is not thought to have the economic feasibility to use natural resources to treat carbon dioxide. In this research, high concentrated industrial wastewater produced from refined salt production facility have been used as metal supplying source, especially for calcium cations. To ensure purity of final products, calcium ions were selectively separated in the form of gypsum dihydrate. After that, carbon dioxide is captured using alkanolamine-based absorbents making carbon dioxide into reactive ionic form. And then, high purity calcium carbonate salt was produced. The existence of calcium carbonate was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) images. Also, carbon dioxide loading curves for absorption, conversion, and desorption were provided. Also, in order to investigate the possibility of the absorbent reuse, reabsorption experiments were performed either. Produced calcium carbonate as final products is seemed to have potential to be used in various industrial fields including cement and paper making industries and pharmaceutical engineering fields.

Keywords: alkanolamine, calcium carbonate, climate change, seawater, industrial wastewater

Procedia PDF Downloads 181
963 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 165
962 Prevalence and Associated Risk Factors of Age-Related Macular Degeneration in the Retina Clinic at a Tertiary Center in Makkah Province, Saudi Arabia: A Retrospective Record Review

Authors: Rahaf Mandura, Fatmah Abusharkh, Layan Kurdi, Rahaf Shigdar, Khadijah Alattas

Abstract:

Introduction: Age-related macular degeneration (AMD) in older individuals are serious health issues that severely impact the quality of life of millions globally. In 2020, the fourth leading cause of blindness worldwide was AMD. The global prevalence of AMD is estimated to be around 8.7%. AMD is a progressive disease involving the macular region of the retina, and it has a complex pathophysiology. RPE cell dysfunction plays a crucial step in the pathway leading to irreversible degeneration of photoreceptors with yellowish lipid-rich, protein-containing drusen deposits accumulating between Bruch's membrane and the RPE. Furthermore, lipofuscinogenesis, drusogenesis, inflammation, and neovascularization are four main processes responsible for the formation of the two types of AMD: the wet (exudative, neovascular) and dry (non-exudative, geographic atrophy) types. We retrospectively evaluated the prevalence of AMD among patients visiting the retina clinic at King Abdulaziz University Hospital (Jeddah, Makkah Province, Saudi Arabia) to identify the commonly associated risk factors of AMD. Methods: The records of 3,067 individuals from 2017 to 2021 were reviewed. Of these, 1,935 satisfied the inclusion criteria and were included in this study. We excluded all patient below 18 years, and those who did not undergo fundus imaging or attend their booked appointments, follow-ups, treatments, and referrals were excluded. Results: The prevalence of AMD among the patients was 4%. The age of patients with AMD was significantly greater than those without AMD (72.4 ± 9.8 years vs. 57.2 ± 15.5 years; p < 0.001). Participants with a family history of AMD tended to have the disease more than those without such a history (85.7% vs. 45%; p = 0.043). Ex- and current smokers were more likely to have AMD than non-smokers (34% and 18.6% vs. 7.2%; p < 0.001). Patients with hypertension and those without type 1 diabetes were at a higher risk of developing AMD than those without hypertension (5.5% vs. 2.8%; p = 0.002) and those with type 1 diabetes (4.2% vs. 0.8%; p = 0.040). In contrast, sex, nationality, type 2 diabetes, and abnormal lipid profile were not significantly associated with AMD. Regarding the clinical characteristics of AMD cases, most cases (70.4%) were of the dry type and affected both eyes (77.2%). The disease duration was ≥5 years in 43.1% of the patients. The most frequent chronic diseases associated with AMD were type 2 diabetes (69.1%), hypertension (61.7%), and dyslipidemia (18.5%). Conclusion: In summary, our single tertiary center study showed that AMD is widely prevalent in Jeddah, Saudi Arabia (4%) and linked to a wide range of risk factors. Some of these are modifiable risk factors that can be adjusted to help reduce AMD occurrence. Furthermore, this study has shown the importance of screening and follow-up of family members of patients with AMD to promote early detection and intervention of AMD. We recommend conducting further research on AMD in Saudi Arabia. Concerning the study design, a community-based cross-sectional study would be more helpful for assessing the disease's prevalence. Finally, recruiting a larger sample size is required for more accurate estimation.

Keywords: age related macular degeneration, prevelence, risk factor, dry AMD

Procedia PDF Downloads 31
961 Translating Creativity to an Educational Context: A Method to Augment the Professional Training of Newly Qualified Secondary School Teachers

Authors: Julianne Mullen-Williams

Abstract:

This paper will provide an overview of a three year mixed methods research project that explores if methods from the supervision of dramatherapy can augment the occupational psychology of newly qualified secondary school teachers. It will consider how creativity and the use of metaphor, as applied in the supervision of dramatherapists, can be translated to an educational context in order to explore the explicit / implicit dynamics between the teacher trainee/ newly qualified teacher and the organisation in order to support the super objective in training for teaching; how to ‘be a teacher.’ There is growing evidence that attrition rates among teachers are rising after only five years of service owing to too many national initiatives, an unmanageable curriculum and deteriorating student discipline. The fieldwork conducted entailed facilitating a reflective space for Newly Qualified Teachers from all subject areas, using methods from the supervision of dramatherapy, to explore the social and emotional aspects of teaching and learning with the ultimate aim of improving the occupational psychology of teachers. Clinical supervision is a formal process of professional support and learning which permits individual practitioners in frontline service jobs; counsellors, psychologists, dramatherapists, social workers and nurses to expand their knowledge and proficiency, take responsibility for their own practice, and improve client protection and safety of care in complex clinical situations. It is deemed integral to continued professional practice to safeguard vulnerable people and to reduce practitioner burnout. Dramatherapy supervision incorporates all of the above but utilises creative methods as a tool to gain insight and a deeper understanding of the situation. Creativity and the use of metaphor enable the supervisee to gain an aerial view of the situation they are exploring. The word metaphor in Greek means to ‘carry across’ indicating a transfer of meaning form one frame of reference to another. The supervision support was incorporated into each group’s induction training programme. The first year group attended fortnightly one hour sessions, the second group received two one hour sessions every term. The existing literature on the supervision and mentoring of secondary school teacher trainees calls for changes in pre-service teacher education and in the induction period. There is a particular emphasis on the need to include reflective and experiential learning, within training programmes and within the induction period, in order to help teachers manage the interpersonal dynamics and emotional impact within a high pressurised environment

Keywords: dramatherapy supervision, newly qualified secondary school teachers, professional development, teacher education

Procedia PDF Downloads 381
960 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 283
959 Safety Assessment of Traditional Ready-to-Eat Meat Products Vended at Retail Outlets in Kebbi and Sokoto States, Nigeria

Authors: M. I. Ribah, M. Jibir, Y. A. Bashar, S. S. Manga

Abstract:

Food safety is a significant and growing public health problem in the world and Nigeria as a developing country, since food-borne diseases are important contributors to the huge burden of sickness and death of humans. In Nigeria, traditional ready-to-eat meat products (RTE-MPs) like balangu, tsire, guru and dried meat products like kilishi, dambun nama, banda, were reported to be highly appreciated because of their eating qualities. The consumption of these products was considered as safe due to the treatments that are usually involved during their production process. However, during processing and handling, the products could be contaminated by pathogens that could cause food poisoning. Therefore, a hazard identification for pathogenic bacteria on some traditional RTE-MPs was conducted in Kebbi and Sokoto States, Nigeria. A total of 116 RTE-MPs (balangu-38, kilishi-39 and tsire-39) samples were obtained from retail outlets and analyzed using standard cultural microbiological procedures in general and selective enrichment media to isolate the target pathogens. A six-fold serial dilution was prepared and using the pour plating method, colonies were counted. Serial dilutions were selected based on the prepared pre-labeled Petri dishes for each sample. A volume of 10-12 ml of molten Nutrient agar cooled to 42-45°C was poured into each Petri dish and 1 ml each from dilutions of 102, 104 and 106 for every sample was respectively poured on a pre-labeled Petri plate after which colonies were counted. The isolated pathogens were identified and confirmed after series of biochemical tests. Frequencies and percentages were used to describe the presence of pathogens. The General Linear Model was used to analyze data on pathogen presence according to RTE-MPs and means were separated using the Tukey test at 0.05 confidence level. Of the 116 RTE-MPs samples collected, 35 (30.17%) samples were found to be contaminated with some tested pathogens. Prevalence results showed that Escherichia coli, salmonella and Staphylococcus aureus were present in the samples. Mean total bacterial count was 23.82×106 cfu/g. The frequency of individual pathogens isolated was; Staphylococcus aureus 18 (15.51%), Escherichia coli 12 (10.34%) and Salmonella 5 (4.31%). Also, among the RTE-MPs tested, the total bacterial counts were found to differ significantly (P < 0.05), with 1.81, 2.41 and 2.9×104 cfu/g for tsire, kilishi, and balangu, respectively. The study concluded that the presence of pathogenic bacteria in balangu could pose grave health risks to consumers, and hence, recommended good manufacturing practices in the production of balangu to improve the products’ safety.

Keywords: ready-to-eat meat products, retail outlets, public health, safety assessment

Procedia PDF Downloads 126
958 Window Opening Behavior in High-Density Housing Development in Subtropical Climate

Authors: Minjung Maing, Sibei Liu

Abstract:

This research discusses the results of a study of window opening behavior of large housing developments in the high-density megacity of Hong Kong. The methods used for the study involved field observations using photo documentation of the four cardinal elevations (north, south-east, and west) of two large housing developments in a very dense urban area of approx. 46,000 persons per square meter within the city of Hong Kong. The targeted housing developments (A and B) are large public housing with a population of about 13,000 in each development of lower income. However, the mean income level in development A is about 40% higher than development B and home ownership is 60% in development A and 0% in development B. Mapping of the surrounding amenities and layout of the developments were also studied to understand the available activities to the residents. The photo documentation of the elevations was taken from November 2016 to February 2018 to gather a full spectrum of different seasons and both in the morning and afternoon (am/pm) times. From the photograph, the window opening behavior was measured by counting the amount of windows opened as a percentage of all the windows on that façade. For each date of survey data collected, weather data was recorded from weather stations located in the same region to collect temperature, humidity and wind speed. To further understand the behavior, simulation studies of microclimate conditions of the housing development was conducted using the software ENVI-met, a widely used simulation tool by researchers studying urban climate. Four major conclusions can be drawn from the data analysis and simulation results. Firstly, there is little change in the amount of window opening during the different seasons within a temperature range of 10 to 35 degrees Celsius. This means that people who tend to open their windows have consistent window opening behavior throughout the year and high tolerance of indoor thermal conditions. Secondly, for all four elevations the lower-income development B opened more windows (almost two times more units) than higher-income development A meaning window opening behavior had strong correlations with income level. Thirdly, there is a lack of correlation between outdoor horizontal wind speed and window opening behavior, as the changes of wind speed do not seem to affect the action of opening windows in most conditions. Similar to the low correlation between horizontal wind speed and window opening percentage, it is found that vertical wind speed also cannot explain the window opening behavior of occupants. Fourthly, there is a slightly higher average of window opening on the south elevation than the north elevation, which may be due to the south elevation being well shaded from high angle sun during the summer and allowing heat into units from lower angle sun during the winter season. These findings are important to providing insight into how to better design urban environments and indoor thermal environments for a liveable high density city.

Keywords: high-density housing, subtropical climate, urban behavior, window opening

Procedia PDF Downloads 122
957 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures

Authors: Francesca Marsili

Abstract:

The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.

Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures

Procedia PDF Downloads 335
956 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood

Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi

Abstract:

Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.

Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls

Procedia PDF Downloads 66
955 Extra Skin Removal Surgery and Its Effects: A Comprehensive Review

Authors: Rebin Mzhda Mohammed, Hoshmand Ali Hama Agha

Abstract:

Excess skin, often consequential to substantial weight loss or the aging process, introduces physical discomfort, obstructs daily activities, and undermines an individual's self-esteem. As these challenges become increasingly prevalent, the need to explore viable solutions grows in significance. Extra skin removal surgery, colloquially known as body contouring surgery, has emerged as a compelling intervention to ameliorate the physical and psychological burdens of excess skin. This study undertakes a comprehensive review to illuminate the intricacies of extra skin removal surgery, encompassing its diverse procedures, associated risks, benefits, and psychological implications on patients. The methodological approach adopted involves a systematic and exhaustive review of pertinent scholarly literature sourced from reputable databases, including PubMed, Google Scholar, and specialized cosmetic surgery journals. Articles are meticulously curated based on their relevance, credibility, and recency. Subsequently, data from these sources are synthesized and categorized, facilitating a comprehensive understanding of the subject matter. Qualitative analysis serves to unravel the nuanced psychological effects, while quantitative data, where available, are harnessed to underpin the study's conclusions. In terms of major findings, the research underscores the manifold advantages of extra skin removal surgery. Patients experience a notable improvement in physical comfort, amplified mobility, enhanced self-confidence, and a newfound ability to don clothing comfortably. Nonetheless, the benefits are juxtaposed with potential risks, encompassing infection, scarring, hematoma, delayed healing, and the challenge of achieving symmetry. A salient discovery is the profound psychological impact of the surgery, as patients consistently report elevated body image satisfaction, heightened self-esteem, and a substantial enhancement in overall quality of life. In summation, this research accentuates the pivotal role of extra skin removal surgery in ameliorating the intricate interplay of physical and psychological difficulties posed by excess skin. By elucidating the diverse procedures, associated risks, and psychological outcomes, the study contributes to a comprehensive and informed comprehension of the surgery's multifaceted effects. Therefore, individuals contemplating this transformative surgical option are equipped with comprehensive insights, ultimately fostering informed decision-making, guided by the expertise of medical professionals.

Keywords: extra skin removal surgery, body contouring, abdominoplasty, brachioplasty, thigh lift, body lift, benefits, risks, psychological effects

Procedia PDF Downloads 63
954 A Strength Weaknesses Opportunities and Threats Analysis of Socialisation Externalisation Combination and Internalisation Modes in Knowledge Management Practice: A Systematic Review of Literature

Authors: Aderonke Olaitan Adesina

Abstract:

Background: The paradigm shift to knowledge, as the key to organizational innovation and competitive advantage, has made the management of knowledge resources in organizations a mandate. A key component of the knowledge management (KM) cycle is knowledge creation, which is researched to be the result of the interaction between explicit and tacit knowledge. An effective knowledge creation process requires the use of the right model. The SECI (Socialisation, Externalisation, Combination, and Internalisation) model, proposed in 1995, is attested to be a preferred model of choice for knowledge creation activities. The model has, however, been criticized by researchers, who raise their concern, especially about its sequential nature. Therefore, this paper reviews extant literature on the practical application of each mode of the SECI model, from 1995 to date, with a view to ascertaining the relevance in modern-day KM practice. The study will establish the trends of use, with regards to the location and industry of use, and the interconnectedness of the modes. The main research question is, for organizational knowledge creation activities, is the SECI model indeed linear and sequential? In other words, does the model need to be reviewed in today’s KM practice? The review will generate a compendium of the usage of the SECI modes and propose a framework of use, based on the strength weaknesses opportunities and threats (SWOT) findings of the study. Method: This study will employ the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to investigate the usage and SWOT of the modes, in order to ascertain the success, or otherwise, of the sequential application of the modes in practice from 1995 to 2019. To achieve the purpose, four databases will be explored to search for open access, peer-reviewed articles from 1995 to 2019. The year 1995 is chosen as the baseline because it was the year the first paper on the SECI model was published. The study will appraise relevant peer-reviewed articles under the search terms: SECI (or its synonym, knowledge creation theory), socialization, externalization, combination, and internalization in the title, abstract, or keywords list. This review will include only empirical studies of knowledge management initiatives in which the SECI model and its modes were used. Findings: It is expected that the study will highlight the practical relevance of each mode of the SECI model, the linearity or not of the model, the SWOT in each mode. Concluding Statement: Organisations can, from the analysis, determine the modes of emphasis for their knowledge creation activities. It is expected that the study will support decision making in the choice of the SECI model as a strategy for the management of organizational knowledge resources, and in appropriating the SECI model, or its remodeled version, as a theoretical framework in future KM research.

Keywords: combination, externalisation, internalisation, knowledge management, SECI model, socialisation

Procedia PDF Downloads 342
953 Improving Teaching in English-Medium Instruction Classes at Japanese Universities through Needs-Based Professional Development Workshops

Authors: Todd Enslen

Abstract:

In order to attract more international students to study for undergraduate degrees in Japan, many universities have been developing English-Medium Instruction degree programs. This means that many faculty members must now teach their courses in English, which raises a number of concerns. A common misconception of English-Medium Instruction (EMI) is that teaching in English is simply a matter of translating materials. Since much of the teaching in Japan still relies on a more traditional, teachercentered, approach, continuing with this style in an EMI environment that targets international students can cause a clash between what is happening and what students expect in the classroom, not to mention what the Scholarship of Teaching and Learning (SoTL) has shown is effective teaching. A variety of considerations need to be taken into account in EMI classrooms such as varying English abilities of the students, modifying input material, and assuring comprehension through interactional checks. This paper analyzes the effectiveness of the English-Medium Instruction (EMI) undergraduate degree programs in engineering, agriculture, and science at a large research university in Japan by presenting the results from student surveys regarding the areas where perceived improvements need to be made. The students were the most dissatisfied with communication with their teachers in English, communication with Japanese students in English, adherence to only English being used in the classes, and the quality of the education they received. In addition, the results of a needs analysis survey of Japanese teachers having to teach in English showed that they believed they were most in need of English vocabulary and expressions to use in the classroom and teaching methods for teaching in English. The result from the student survey and the faculty survey show similar concerns between the two groups. By helping the teachers to understand student-centered teaching and the benefits for learning that it provides, teachers may begin to incorporate more student-centered approaches that in turn help to alleviate the dissatisfaction students are currently experiencing. Through analyzing the current environment in Japanese higher education against established best practices in teaching and EMI, three areas that need to be addressed in professional development workshops were identified. These were “culture” as it relates to the English language, “classroom management techniques” and ways to incorporate them into classes, and “language” issues. Materials used to help faculty better understand best practices as they relate to these specific areas will be provided to help practitioners begin the process of helping EMI faculty build awareness of better teaching practices. Finally, the results from faculty development workshops participants’ surveys will show the impact that these workshops can have. Almost all of the participants indicated that they learned something new and would like to incorporate the ideas from the workshop into their teaching. In addition, the vast majority of the participants felt the workshop provided them with new information, and they would like more workshops like these.

Keywords: English-medium instruction, materials development, professional development, teaching effectiveness

Procedia PDF Downloads 85
952 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 155
951 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells

Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau

Abstract:

Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.

Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability

Procedia PDF Downloads 66
950 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 138
949 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels

Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray

Abstract:

There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.

Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold

Procedia PDF Downloads 201
948 Baricitinib Lipid-based Nanosystems as a Topical Alternative for Atopic Dermatitis Treatment

Authors: N. Garrós, P. Bustos, N. Beirampour, R. Mohammadi, M. Mallandrich, A.C. Calpena, H. Colom

Abstract:

Atopic dermatitis (AD) is a persistent skin condition characterized by chronic inflammation caused by an autoimmune response. It is a prevalent clinical issue that requires continual treatment to enhance the patient's quality of life. Systemic therapy often involves the use of glucocorticoids or immunosuppressants to manage symptoms. Our objective was to create and assess topical liposomal formulations containing Baricitinib (BNB), a reversible inhibitor of Janus-associated kinase (JAK), which is involved in various immune responses. These formulations were intended to address flare-ups and improve treatment outcomes for AD. We created three distinct liposomal formulations by combining different amounts of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), cholesterol (CHOL), and ceramide (CER): (i) pure POPC, (ii) POPC mixed with CHOL (at a ratio of 8:2, mol/mol), and (iii) POPC mixed with CHOL and CER (at a ratio of 3.6:2.4:4.0 mol/mol/mol). We conducted various tests to determine the formulations' skin tolerance, irritancy capacity, and their ability to cause erythema and edema on altered skin. We also assessed the transepidermal water loss (TEWL) and skin hydration of rabbits to evaluate the efficacy of the formulations. Histological analysis, the HET-CAM test, and the modified Draize test were all used in the evaluation process. The histological analysis revealed that liposome POPC and POPC:CHOL avoided any damage to the tissues structures. The HET-CAM test showed no irritation effect caused by any of the three liposomes, and the modified Draize test showed a good Draize score for erythema and edema. Liposome POPC effectively counteracted the impact of xylol on the skin, and no erythema or edema was observed during the study. TEWL values were constant for all the liposomes with similar values to the negative control (within the range 8 - 15 g/h·m2, which means a healthy value for rabbits), whereas the positive control showed a significant increase. The skin hydration values were constant and followed the trend of the negative control, while the positive control showed a steady increase during the tolerance study. In conclusion, the developed formulations containing BNB exhibited no harmful or irritating effects, they did not demonstrate any irritant potential in the HET-CAM test and liposomes POPC and POPC:CHOL did not cause any structural alteration according to the histological analysis. These positive findings suggest that additional research is necessary to evaluate the efficacy of these liposomal formulations in animal models of the disease, including mutant animals. Furthermore, before proceeding to clinical trials, biochemical investigations should be conducted to better understand the mechanisms of action involved in these formulations.

Keywords: baricitinib, HET-CAM test, histological study, JAK inhibitor, liposomes, modified draize test

Procedia PDF Downloads 89
947 Strengthening Adult Literacy Programs in Order to End Female Genital Mutilation to Achieve Sustainable Development Goals

Authors: Odenigbo Veronica Ngozi, Lorreta Chika Ukwuaba

Abstract:

This study focuses on how the strengthening adult literacy program can help accelerate transformative strategies to end female genital mutilation (FGM) in Nigeria, specifically in Nsukka Local Government Area. The research delves into the definition of FGM, adult literacy programs, and how to achieve ending FGM to attain Sustainable Development Goals (SDGs) in 2030. It further discusses the practice of FGM in Nigeria and emphasizes the statement of the problem. The main aim of the study is to investigate how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs in 2030. The researchers utilized a survey research design to conduct the study in Nsukka L.G.A. The population was composed of 26 facilitators and adult learners in five adult learning centers in the area. The entire population was used as a sample, and structured questionnaires were employed to elicit information. The items on the questionnaire were face-validated by three experts, and the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analyzed using means and standard deviation while the hypothesis was tested at 0.05 level of degree of significance using a t-test. The findings show that through adult literacy program acceleration of transformative strategies, the practices of FGM can be ended. Strengthening adult literacy programs is a good channel to end or stop FGM through the knowledge and skill acquired from the learning centers. The theoretical importance of the study lies in the fact that it highlights the role of adult literacy programs in accelerating transformative strategies to combat harmful cultural practices such as FGM. It further supports the importance of education and knowledge in achieving sustainable development goals by 2030. Structured questionnaires were distributed to an entire population of 26 facilitators and adult learners in five adult learning centers in Nsukka L.G.A. The questionnaire items were face–validated by three experts, and the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analyzed using means and standard deviation, while the hypothesis was tested using a t-test at 0.05 level of degree of significance. The study addressed the question of how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs by 2030. In conclusion, the study found that adult literacy is a good tool to end FGM in Nigeria. The recommendations were that government, non-governmental organizations (NGOs), Community-based organizations (CBOs), and individuals should support the funding and establishment of adult literacy centers in communities so as to reach every illiterate parent or individual and acquire the knowledge and skill needed to understand the negative effect of FGM in the life of a girl child.

Keywords: adult literacy, female genital mutilation, learning centers, SDGs, strengthening

Procedia PDF Downloads 62
946 Development and Total Error Concept Validation of Common Analytical Method for Quantification of All Residual Solvents Present in Amino Acids by Gas Chromatography-Head Space

Authors: A. Ramachandra Reddy, V. Murugan, Prema Kumari

Abstract:

Residual solvents in Pharmaceutical samples are monitored using gas chromatography with headspace (GC-HS). Based on current regulatory and compendial requirements, measuring the residual solvents are mandatory for all release testing of active pharmaceutical ingredients (API). Generally, isopropyl alcohol is used as the residual solvent in proline and tryptophan; methanol in cysteine monohydrate hydrochloride, glycine, methionine and serine; ethanol in glycine and lysine monohydrate; acetic acid in methionine. In order to have a single method for determining these residual solvents (isopropyl alcohol, ethanol, methanol and acetic acid) in all these 7 amino acids a sensitive and simple method was developed by using gas chromatography headspace technique with flame ionization detection. During development, no reproducibility, retention time variation and bad peak shape of acetic acid peaks were identified due to the reaction of acetic acid with the stationary phase (cyanopropyl dimethyl polysiloxane phase) of column and dissociation of acetic acid with water (if diluent) while applying temperature gradient. Therefore, dimethyl sulfoxide was used as diluent to avoid these issues. But most the methods published for acetic acid quantification by GC-HS uses derivatisation technique to protect acetic acid. As per compendia, risk-based approach was selected as appropriate to determine the degree and extent of the validation process to assure the fitness of the procedure. Therefore, Total error concept was selected to validate the analytical procedure. An accuracy profile of ±40% was selected for lower level (quantitation limit level) and for other levels ±30% with 95% confidence interval (risk profile 5%). The method was developed using DB-Waxetr column manufactured by Agilent contains 530 µm internal diameter, thickness: 2.0 µm, and length: 30 m. A constant flow of 6.0 mL/min. with constant make up mode of Helium gas was selected as a carrier gas. The present method is simple, rapid, and accurate, which is suitable for rapid analysis of isopropyl alcohol, ethanol, methanol and acetic acid in amino acids. The range of the method for isopropyl alcohol is 50ppm to 200ppm, ethanol is 50ppm to 3000ppm, methanol is 50ppm to 400ppm and acetic acid 100ppm to 400ppm, which covers the specification limits provided in European pharmacopeia. The accuracy profile and risk profile generated as part of validation were found to be satisfactory. Therefore, this method can be used for testing of residual solvents in amino acids drug substances.

Keywords: amino acid, head space, gas chromatography, total error

Procedia PDF Downloads 144
945 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries

Authors: Anita Richter

Abstract:

Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.

Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries

Procedia PDF Downloads 319
944 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 114