Search results for: water locomotion
6211 Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes
Authors: K. Selvakumar, J. Kalaiselvimary, B. Jansirani, M. Ramesh Prabhu
Abstract:
Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells.Keywords: composite, proton conduction, sulphonation, water uptake
Procedia PDF Downloads 2506210 Liquid Waste Management in Cluster Development
Authors: Abheyjit Singh, Kulwant Singh
Abstract:
There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.Keywords: collection, treatment, utilization, economic
Procedia PDF Downloads 846209 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium
Authors: Harche Rima, Laoufi Nadia Aicha
Abstract:
The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling
Procedia PDF Downloads 556208 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications
Authors: Badr M. Thamer
Abstract:
The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment
Procedia PDF Downloads 1516207 Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.
Authors: P. S. Rajinikanth, Shobana Mariappan, Jestin Chellian
Abstract:
The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application.Keywords: nano emulsion, controlled release, 5 fluorouracil, skin penetration, skin irritation
Procedia PDF Downloads 5046206 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst
Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski
Abstract:
Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution
Procedia PDF Downloads 2166205 Hydro-Geochemistry and Groundwater Quality Assessment of Rajshahi City in Bangladesh
Authors: M. G. Mostafa, S. M. Helal Uddin, A. B. M. H. Haque, M. R. Hasan
Abstract:
The study was carried out to understand the hydro-geochemistry and ground water quality in Rajshahi City of Bangladesh. 240 groundwater (shallow and deep tubewell) samples were collected during the year 2009-2010 covering pre-monsoon, monsoon and post-monsoon seasons and analyzed for various physico-chemical parameters including major ions. The results reveal that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under hard to very hard category. The concentration of calcium, iron, manganese, arsenic and lead ions were found far above the permissible limit in most of the shallow tubewells water samples. The analysis results show that the mean concentrations of cations and anions were observed in the order: Ca > Mg > Na > K > Fe > Mn > Pb > Zn > Cu > As (total) > Cd and HCO3-> Cl-> SO42-> NO3-, respectively. The concentrations of TH, TDS, HCO3-, NO3-, Ca, Fe, Zn, Cu, Pb, and As (total) were found to be higher during post-monsoon compare to pre-monsoon, whilst K, Mg, Cd, and Cl were found higher during pre-monsoon and monsoon. Ca-HCO3 was identified as the major hydro chemical facie using piper trilinear diagram. Higher concentration of toxic metals including Fe, Mn, As and Pb were found indicating various health hazards. The results also illustrate that the rock water interaction was the major geochemical process controlling the chemistry of groundwater in the study area.Keywords: physio-chemical parameters, groundwater, geochemistry, Rajshahi city
Procedia PDF Downloads 3176204 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization
Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John
Abstract:
Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: Ground water > surface water > sediments > soils.Keywords: microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content
Procedia PDF Downloads 4206203 Environmental Impact Assessment of OMI Irrigation Scheme, Nigeria
Authors: Olumuyiwa I. Ojo, Kola Amao, Josiah A. Adeyemo, Fred A. O. Otieno
Abstract:
A study was carried out to assess the environmental impact of Kampe (Omi) irrigation scheme with respect to public health hazards, the rising water table, salinity and alkalinity problems on the project site. A structured questionnaire was used as the main tool to gather information on the effect of the irrigation project on the various communities around the project site. The different sections of the questionnaire enabled the gathering of information ranging from general to more specific information. The results obtained from the study showed that the two effects are obvious: the 'positive effects' which include increasing the socioeconomic development of the entire communities, resulting in an increase in employment opportunities and better lifestyle and the 'negative effects' in which malaria (100% occurrence) and schistosomiasis (66.7%) were found to be active diseases caused by irrigation activities. Increase in height of water table and salinity is eminent in the irrigation site unless adequate drainage is provided. The collection and experimental analyses of representation soil and water samples from each scheme were used to assess the current status of each receptor. Results obtained indicate the absence of soil with sodium adsorption ration (SAR) values ranging from 3.0 to 3.89, exchangeable sodium percentage (ESP) ranged from 3.8% to 5.5% while pH values ranged from 6.60 to 7.00. Drainage facilities of the project site are inadequate, therefore making it difficult to leach the soil and flood history is occasional.Keywords: irrigation, impact, soil analysis, Nigeria
Procedia PDF Downloads 2996202 Increasing Sustainability of Melanin Bio-Production Using Seawater
Authors: Harsha Thaira, Ritu Raval, Keyur Raval
Abstract:
Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.Keywords: melanin, marine, bioprocess, pseudomonas
Procedia PDF Downloads 2786201 Technical and Economical Evaluation of Electricity Generation and Seawater Desalination Using Nuclear Energy
Authors: A. Hany A. Khater, G. M. Mostafa, M. R. Badawy
Abstract:
The techno-economic analysis of the nuclear desalination is a very important tool that enables studying of the mutual effects between the nuclear power plant and the coupled desalination plant under different operating conditions, and hence investigating the feasibility of safe and economical production of potable water. For this purpose, a comprehensive model for both technical and economic performance evaluation of the nuclear desalination has been prepared. The developed model has the capability to be used in performing a parametric study for the performance measuring parameters of the nuclear desalination system. Also a sensitivity analysis of varying important factors such as interest/discount rate, power plant availability, fossil fuel prices, purchased electricity price, nuclear fuel cost, and specific base cost for both power and water plant has been conducted.Keywords: uclear desalination, PWR, MED, MED-TVC, MSF, RO
Procedia PDF Downloads 7316200 Effects of Titanium Dioxide Coatings on Building Composites for Sustainable Construction Applications
Authors: Ifeyinwa Ijeoma Obianyo, Luqman Adedeji Taiwo, Olugbenga O. Amu, Azikiwe Peter Onwualu
Abstract:
Improving the durability of building materials saves maintenance costs, construction time, and energy. In this study, titanium dioxide coated conventional and non-conventional composites were produced, and the effects of titanium dioxide coatings were investigated. Conventional composites were produced using river sand and Portland cement, whereas non-conventional composites were produced by partially replacing river sand and Portland cement with quarry dust and rice husk ash. Water absorption and thickness swelling tests were conducted on the produced coated and non-coated block samples. A reduction in water absorption was observed in the coated composite samples when compared to the non-coated composite samples, and this is an indication of the improved durability of the samples coated with titanium dioxide. However, there was an increase in the thickness swelling of coatings on the coated block samples, but this increase has a slight influence on the compressive strength of the coated samples. The outcome of this study indicates that coating composite building blocks with titanium dioxide will improve theirdurability. Also, the site exposure experiments revealed the self-cleansing properties of TiO2-coated composite block samples, while the Rhodamine B discolouration test confirmed the photocatalytic features of TiO2-coated composite block samples.Keywords: titanium dioxide, water absorption, durability, mechanical properties, building composite
Procedia PDF Downloads 1176199 A Source Point Distribution Scheme for Wave-Body Interaction Problem
Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing
Abstract:
A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.Keywords: source point distribution, panel method, Rankine source, desingularized algorithm
Procedia PDF Downloads 3666198 Performance Analysis of High Temperature Heat Pump Cycle for Industrial Process
Authors: Seon Tae Kim, Robert Hegner, Goksel Ozuylasi, Panagiotis Stathopoulos, Eberhard Nicke
Abstract:
High-temperature heat pumps (HTHP) that can supply heat at temperatures above 200°C can enhance the energy efficiency of industrial processes and reduce the CO₂ emissions connected with the heat supply of these processes. In the current work, the thermodynamic performance of 3 different vapor compression cycles, which use R-718 (water) as a working medium, have been evaluated by using a commercial process simulation tool (EBSILON Professional). All considered cycles use two-stage vapor compression with intercooling between stages. The main aim of the study is to compare different intercooling strategies and study possible heat recovery scenarios within the intercooling process. This comparison has been carried out by computing the coefficient of performance (COP), the heat supply temperature level, and the respective mass flow rate of water for all cycle architectures. With increasing temperature difference between the heat source and heat sink, ∆T, the COP values decreased as expected, and the highest COP value was found for the cycle configurations where both compressors have the same pressure ratio (PR). The investigation on the HTHP capacities with optimized PR and exergy analysis has also been carried out. The internal heat exchanger cycle with the inward direction of secondary flow (IHX-in) showed a higher temperature level and exergy efficiency compared to other cycles. Moreover, the available operating range was estimated by considering mechanical limitations.Keywords: high temperature heat pump, industrial process, vapor compression cycle, R-718 (water), thermodynamic analysis
Procedia PDF Downloads 1536197 Installation of an Inflatable Bladder and Sill Walls for Riverbank Erosion Protection and Improved Water Intake Zone Smokey Hill River – Salina, Kansas
Authors: Jeffrey A. Humenik
Abstract:
Environmental, Limited Liability Corporation (EMR) provided civil construction services to the U.S. Army Corps of Engineers, Kansas City District, for the placement of a protective riprap blanket on the west bank of the Smoky Hill River, construction of 2 shore abutments and the construction of a 140 foot long sill wall spanning the Smoky Hill River in Salina, Kansas. The purpose of the project was to protect the riverbank from erosion and hold back water to a specified elevation, creating a pool to ensure adequate water intake for the municipal water supply. Geotextile matting and riprap were installed for streambank erosion protection. An inflatable bladder (AquaDam®) was designed to the specific river dimension and installed to divert the river and allow for dewatering during the construction of the sill walls and cofferdam. AquaDam® consists of water filled polyethylene tubes to create aqua barriers and divert water flow or prevent flooding. A challenge of the project was the fact that 100% of the sill wall was constructed within an active river channel. The threat of flooding of the work area, damage to the aqua dam by debris, and potential difficulty of water removal presented a unique set of challenges to the construction team. Upon completion of the West Sill Wall, floating debris punctured the AquaDam®. The manufacturing and delivery of a new AquaDam® would delay project completion by at least 6 weeks. To keep the project ahead of schedule, the decision was made to construct an earthen cofferdam reinforced with rip rap for the construction of the East Abutment and East Sill Wall section. During construction of the west sill wall section, a deep scour hole was encountered in the wall alignment that prevented EMR from using the natural rock formation as a concrete form for the lower section of the sill wall. A formwork system was constructed, that allowed the west sill wall section to be placed in two horizontal lifts of concrete poured on separate occasions. The first sectional lift was poured to fill in the scour hole and act as a footing for the second sectional lift. Concrete wall forms were set on the first lift and anchored to the surrounding riverbed in a manner that the second lift was poured in a similar fashion as a basement wall. EMR’s timely decision to keep the project moving toward completion in the face of changing conditions enabled project completion two (2) months ahead of schedule. The use of inflatable bladders is an effective and cost-efficient technology to divert river flow during construction. However, a secondary plan should be part of project design in the event debris transported by river punctures or damages the bladders.Keywords: abutment, AquaDam®, riverbed, scour
Procedia PDF Downloads 1606196 Delimitation of the Perimeters of PR Otection of the Wellfield in the City of Adrar, Sahara of Algeria through the Used Wyssling’s Method
Authors: Ferhati Ahmed, Fillali Ahmed, Oulhadj Younsi
Abstract:
delimitation of the perimeters of protection in the catchment area of the city of Adrar, which are established around the sites for the collection of water intended for human consumption of drinking water, with the objective of ensuring the preservation and reducing the risks of point and accidental pollution of the resource (Continental Intercalar groundwater of the Northern Sahara of Algeria). This wellfield is located in the northeast of the city of Adrar, it covers an area of 132.56 km2 with 21 Drinking Water Supply wells (DWS), pumping a total flow of approximately 13 Hm3/year. The choice of this wellfield is based on the favorable hydrodynamic characteristics and their location in relation to the agglomeration. The vulnerability to pollution of this slick is very high because the slick is free and suffers from the absence of a protective layer. In recent years, several factors have been introduced around the field that can affect the quality of this precious resource, including the presence of a strong centre for domestic waste and agricultural and industrial activities. Thus, its sustainability requires the implementation of protection perimeters. The objective of this study is to set up three protection perimeters: immediate, close and remote. The application of the Wyssling method makes it possible to calculate the transfer time (t) of a drop of groundwater located at any point in the aquifer up to the abstraction and thus to define isochrones which in turn delimit each type of perimeter, 40 days for the nearer and 100 days for the farther away. Special restrictions are imposed for all activities depending on the distance of the catchment. The application of this method to the Adrar city catchment field showed that the close and remote protection perimeters successively occupy areas of 51.14 km2 and 92.9 km2. Perimeters are delimited by geolocated markers, 40 and 46 markers successively. These results show that the areas defined as "near protection perimeter" are free from activities likely to present a risk to the quality of the water used. On the other hand, on the areas defined as "remote protection perimeter," there is some agricultural and industrial activities that may present an imminent risk. A rigorous control of these activities and the restriction of the type of products applied in industrial and agricultural is imperative.Keywords: continental intercalaire, drinking water supply, groundwater, perimeter of protection, wyssling method
Procedia PDF Downloads 1016195 Catastrophic Burden and Impoverishment Effect of WASH Diseases: A Ground Analysis of Bhadohi District Uttar Pradesh, India
Authors: Jyoti Pandey, Rajiv Kumar Bhatt
Abstract:
In the absence of proper sanitation, people suffered from high levels of infectious diseases leading to high incidences of morbidity and mortality. This directly affected the ability of a country to maintain an efficient economy and implied great personal suffering among infected individuals and their families. This paper aims to estimate the catastrophic expenditure of households in terms of direct and indirect losses which a person has to face due to the illness of WASH diseases; the severity of the scenario is answered by finding out the impoverishment effect. We used the primary data survey for the objective outlined. Descriptive and analytical research types are used. The survey is done with the questionnaire formulated precisely, taking care of the inclusion of all the variables and probable outcomes. A total of 300 households is covered under this study. In order to pursue the objectives outlined, multistage random sampling of households is used. In this study, the cost of illness approach is followed for accessing economic impact. The study brought out the attention that a significant portion of the total consumption expenditure is going lost for the treatment of water and sanitation related diseases. The infectious and water vector-borne disease can be checked by providing sufficient required sanitation facility, and that 2.02% loss in income can be gained if the mechanisms of the pathogen is checked.Keywords: water, sanitation, impoverishment, catastrophic expenditure
Procedia PDF Downloads 916194 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils
Authors: Sara Soltanpour, Adolfo Foriero
Abstract:
Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil
Procedia PDF Downloads 1326193 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk
Authors: Masbubul Ishtiaque Ahmed
Abstract:
Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity
Procedia PDF Downloads 2886192 Oviposition Responses of the Malaria Mosquito Anopheles gambiae sensu stricto to Hay Infusion Volatiles in Laboratory Bioassays and Investigation of Volatile Detection Methods
Authors: Lynda K. Eneh, Okal N. Mike, Anna-Karin Borg-Karlson, Ulrike Fillinger, Jenny M. Lindh
Abstract:
The responses of individual gravid Anopheles gambiae sensu stricto (s.s.) to hay infusion volatiles were evaluated under laboratory conditions. Such infusions have long been known to be effective baits for monitoring mosquitoes that vector arboviral and filarial diseases but have previously not been tested for malaria vectors. Hay infusions were prepared by adding sun-dried Bermuda grass to lake water and leaving the mixture in a covered bucket for three days. The proportions of eggs laid by gravid An. gambiae s.s. in diluted (10%) and concentrated infusions ( ≥ 25%) was compared to that laid in lake water in two-choice egg-count bioassays. Furthermore, with the aim to develop a method that can be used to collect volatiles that influence the egg-laying behavior of malaria mosquitoes, different volatile trapping methods were investigated. Two different polymer-traps eluted using two different desorption methods and three parameters were investigated. Porapak®-Q traps and solvent desorption was compared to Tenax®-TA traps and thermal desorption. The parameters investigated were: collection time (1h vs. 20h), addition of salt (0.15 g/ml sodium chloride (NaCl) vs. no NaCl), and stirring the infusion (0 vs. 300 rpm). Sample analysis was with gas chromatography-mass spectrometry (GC-MS). An. gambiae s.s was ten times less likely to lay eggs in concentrated hay infusion than in lake water. The volatiles were best characterized by thermally desorbed Tenax traps, collected for 20 hours from infusion aliquots with sodium chloride added. Ten volatiles identified from headspace and previously indicated as putative oviposition semiochemicals for An. gambiae s.s. or confirmed semiochemicals for other mosquito species were tested in egg-count bioassays. Six of these (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole and 3-methylindole), when added to lake water, were avoided for egg-laying when lake water was offered as the alternative in dual-choice egg count bioassays. These compounds likely contribute to the unfavorable oviposition responses towards hay infusions. This difference in oviposition response of different mosquito species should be considered when designing control measures.Keywords: Anopheles gambiae, oviposition behaviour, egg-count cage bioassays, hay infusions, volatile detection, semiochemicals
Procedia PDF Downloads 3546191 Measure Determination and Zoning of Oil Pollution (TPH) on Costal Sediments of Bandar Abbas (Hormoz Strait)
Authors: Maryam Ehsanpour, Majid Afkhami
Abstract:
This study investigated the presence of hydrocarbon pollution in industrial waste water sediments found in west coast of Bandar Abass (northern part of Hormoz strait). Therefore, six transects from west of the city were selected. Each transect consists of three stations intervals 100, 600 and 1100 meter from the low tide were sampled in both the summer and winter season (July and January 2009). Physical and chemical parameters of water, concentration of total petroleum hydrocarbons (TPH) and soil tissue deposition were evaluated according to standard procedures of MOOPAM. Average results of dissolved oxygen were 6.42 mg/l, temperature 26.31°C, pH 8.55, EC 54.47 ms/cm and salinity 35.98 g/l respectively. Results indicate that minimum, maximum and average concentration of total petroleum hydrocarbons (TPH) in sediments were, 60.18, 751.83, and 229.21 µg/kg respectively which are less than comparable studies in other parts of Persian Gulf.Keywords: oil pollution, Bandar Abbas, costal sediments, TPH
Procedia PDF Downloads 7226190 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler
Authors: Damiaa Saad Khudor
Abstract:
The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.Keywords: fluidization, powder technology, thermal design, heat exchangers
Procedia PDF Downloads 5166189 Preliminary Study of Desiccant Cooling System under Algerian Climates
Abstract:
The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.Keywords: dehumidification, efficiency, humidity, Trnsys
Procedia PDF Downloads 4436188 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production
Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani
Abstract:
The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.
Procedia PDF Downloads 1216187 Failure Analysis of Pipe System at a Hydroelectric Power Plant
Authors: Ali Göksenli, Barlas Eryürek
Abstract:
In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factorKeywords: failure analysis, hydroelectric plant, crack, shock wave, welding seam
Procedia PDF Downloads 3476186 Performance Evaluation of Hemispherical Basin Type Solar Still
Authors: Husham Mahmood Ahmed
Abstract:
For so many reasons, fresh water scarcity is one of major problems facing the world and in particularly in the third world in the Northern Africa, the Middle East, the Southwest of Asia, and many other desert areas. Solar distillation offers one of the most promising solutions of renewable energy to this aggravated situation. The main obstacle hindering the spread of the use of solar technology for fresh water production is its low efficiency. Therefore, enhancing the solar stills performances by studying the parameters affecting their productivity and implementing new ideas and a different design are the main goals of the investigators in recent years. The present research is experimental work that tests a new design of solar still with a hemispherical top cover for water desalination with and without external reflectors under the climate of the Kingdom of Bahrain during the autumn season. The hemispherical cover has a base diameter of 1m and a depth of 0.4m, die cast from a 6 mm thick Lexan plastic sheet. The net effective area was 0.785 m2. It has been found that the average daily production rate obtained from the hemispherical top cover solar still is 3.610 liter/day. This yield is 11.1% higher than the yield of a conventional simple type single slope solar still having 20ᴼ slope glass cover and a larger effective area of 1 m2 obtained in previous research under similar climatic conditions. It has also been found that adding 1.2m long by 0.15 curved reflectors increased the yield of the hemispherical solar still by 5.5 %, while the 1.2 long by 0.3m curved reflector increased the yield by about 8%.Keywords: hemispherical solar still, solar desalination, solar energy, the Northern Africa
Procedia PDF Downloads 3966185 Enhancing Institutional Roles and Managerial Instruments for Irrigation Modernization in Sudan: The Case of Gezira Scheme
Authors: Mohamed Ahmed Abdelmawla
Abstract:
Calling to achieve Millennium Development Goals (MDGs) engaged with agriculture, i.e. poverty alleviation targets, human resources involved in agricultural sectors with special emphasis on irrigation must receive wealth of practical experience and training. Increased food production, including staple food, is needed to overcome the present and future threats to food security. This should happen within a framework of sustainable management of natural resources, elimination of unsustainable methods of production and poverty reduction (i.e. axes of modernization). A didactic tool to confirm the task of wise and maximum utility is the best management and accurate measurement, as major requisites for modernization process. The key component to modernization as a warranted goal is adhering great attention to management and measurement issues via capacity building. As such, this paper stressed the issues of discharge management and measurement by Field Outlet Pipes (FOP) for selected ones within the Gezira Scheme, where randomly nine FOPs were selected as representative locations. These FOPs extended along the Gezira Main Canal at Kilo 57 areas in the South up to Kilo 194 in the North. The following steps were followed during the field data collection and measurements: For each selected FOP, a 90 v- notch thin plate weir was placed in such away that the water was directed to pass only through the notch. An optical survey level was used to measure the water head of the notch and FOP. Both calculated discharge rates as measured by the v – notch, denoted as [Qc], and the adopted discharges given by (MOIWR), denoted as [Qa], are tackled for the average of three replicated readings undertaken at each location. The study revealed that the FOP overestimates and sometimes underestimates the discharges. This is attributed to the fact that the original design specifications were not fulfilled or met at present conditions where water is allowed to flow day and night with high head fluctuation, knowing that the FOP is non modular structure, i.e. the flow depends on both levels upstream and downstream and confirmed by the results of this study. It is convenient and formative to quantify the discharge in FOP with weirs or Parshall flumes. Cropping calendar should be clearly determined and agreed upon before the beginning of the season in accordance and consistency with the Sudan Gezira Board (SGB) and Ministry of Irrigation and Water Resources. As such, the water indenting should be based on actual Crop Water Requirements (CWRs), not on rules of thumb (420 m3/feddan, irrespective of crop or time of season).Keywords: management, measurement, MDGs, modernization
Procedia PDF Downloads 2556184 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation
Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig
Abstract:
This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan
Procedia PDF Downloads 1206183 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt
Authors: Shereif. H. Mahmoud
Abstract:
Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)
Procedia PDF Downloads 3656182 Comparison of Gait Variability in Individuals with Trans-Tibial and Trans-Femoral Lower Limb Loss: A Pilot Study
Authors: Hilal Keklicek, Fatih Erbahceci, Elif Kirdi, Ali Yalcin, Semra Topuz, Ozlem Ulger, Gul Sener
Abstract:
Objectives and Goals: The stride-to-stride fluctuations in gait is a determinant of qualified locomotion as known as gait variability. Gait variability is an important predictive factor of fall risk and useful for monitoring the effects of therapeutic interventions and rehabilitation. Comparison of gait variability in individuals with trans-tibial lower limb loss and trans femoral lower limb loss was the aim of the study. Methods: Ten individuals with traumatic unilateral trans femoral limb loss(TF), 12 individuals with traumatic transtibial lower limb loss(TT) and 12 healthy individuals(HI) were the participants of the study. All participants were evaluated with treadmill. Gait characteristics including mean step length, step length variability, ambulation index, time on each foot of participants were evaluated with treadmill. Participants were walked at their preferred speed for six minutes. Data from 4th minutes to 6th minutes were selected for statistical analyses to eliminate learning effect. Results: There were differences between the groups in intact limb step length variation, time on each foot, ambulation index and mean age (p < .05) according to the Kruskal Wallis Test. Pairwise analyses showed that there were differences between the TT and TF in residual limb variation (p=.041), time on intact foot (p=.024), time on prosthetic foot(p=.024), ambulation index(p = .003) in favor of TT group. There were differences between the TT and HI group in intact limb variation (p = .002), time on intact foot (p<.001), time on prosthetic foot (p < .001), ambulation index result (p < .001) in favor of HI group. There were differences between the TF and HI group in intact limb variation (p = .001), time on intact foot (p=.01) ambulation index result (p < .001) in favor of HI group. There was difference between the groups in mean age result from HI group were younger (p < .05).There were similarity between the groups in step lengths (p>.05) and time of prosthesis using in individuals with lower limb loss (p > .05). Conclusions: The pilot study provided basic data about gait stability in individuals with traumatic lower limb loss. Results of the study showed that to evaluate the gait differences between in different amputation level, long-range gait analyses methods may be useful to get more valuable information. On the other hand, similarity in step length may be resulted from effective prosthetic using or effective gait rehabilitation, in conclusion, all participants with lower limb loss were already trained. The differences between the TT and HI; TF and HI may be resulted from the age related features, therefore, age matched population in HI were recommended future studies. Increasing the number of participants and comparison of age-matched groups also recommended to generalize these result.Keywords: lower limb loss, amputee, gait variability, gait analyses
Procedia PDF Downloads 281