Search results for: tetrahedron formation
828 Spatial Element Importance and Its Relation to Characters’ Emotions and Self Awareness in Michela Murgia’s Collection of Short Stories Tre Ciotole. Rituali per Un Anno DI Crisi
Authors: Nikica Mihaljević
Abstract:
Published in 2023, "Tre ciotole. Rituali per un anno di crisi" is a collection of short stories completely disconnected from one another in regard to topics and the representation of characters. However, these short stories complete and somehow continue each other in a particular way. The book happens to be Murgia's last book, as the author died a few months later after the book's publication and it appears as a kind of summary of all her previous literary works. Namely, in her previous publications, Murgia already stressed certain characters' particularities, such as solitude and alienation from others, which are at the center of attention in this literary work, too. What all the stories present in "Tre ciotole" have in common is the dealing with characters' identity and self-awareness through the challenges they confront and the way the characters live their emotions in relation to the surrounding space. Although the challenges seem similar, the spatial element around the characters is different, but it confirms each time that characters' emotions, and, consequently, their self-awareness, can be formed and built only through their connection and relation to the surrounding space. In that way, the reader creates an imaginary network of complex relations among characters in all the short stories, which gives him/her the opportunity to search for a way to break out of the usual patterns that tend to be repeated while characters focus on building self-awareness. The aim of the paper is to determine and analyze the role of spatial elements in the creation of characters' emotions and in the process of self-awareness. As the spatial element changes or gets transformed and/or substituted, in the same way, we notice the arise of the unconscious desire for self-harm in the characters, which damages their self-awareness. Namely, the characters face a crisis that they cannot control by inventing other types of crises that can be controlled. That happens to be their way of acting in order to find the way out of the identity crisis. Consequently, we expect that the results of the analysis point out the similarities in the short stories in characters' depiction as well as to show the extent to which the characters' identities depend on the surrounding space in each short story. In this way, the results will highlight the importance of spatial elements in characters' identity formation in Michela Murgia's short stories and also summarize the importance of the whole Murgia's literary opus.Keywords: Italian literature, short stories, environment, spatial element, emotions, characters
Procedia PDF Downloads 57827 Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings
Authors: A. Čelan, M. Ćosić, D. Rušić, N. Kuzmanić
Abstract:
Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm3 bench scale batch cooling crystallizer with an aspect ratio (H/T) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution.Keywords: dual impeller crystallizer, fluid flow pattern, metastable zone width, mixing time, radial impeller
Procedia PDF Downloads 197826 Questions of Subjectivity in Establishing Plurality in Indian Women’s Autobiographies
Authors: Angkayarkan Vinayakaselvi
Abstract:
This paper aims at unpacking the questions of subjectivity and their role in altering and redefining the constructed images of self and community as represented in chosen Indian women’s autobiographies. India is a country of plurality and this plurality is further extended by diasporic explorations. As the third world feminism questioned the Euro-American views on homogenizing the socio-cultural condition of women of all over the world, Indian feminism needs to critique the view that all Indian women are one and the same. Similar to the plural nature of nation, the nature and condition of women, too, are plural in India. Indian women are differentiated by caste, class, and region. A critical scrutiny of autobiographies written by Indian women belong to different socio-cultural groups – Northeast Indian, Dalit and Diasporic categories – will assess the impact of education, profession and socio-cultural and economic status on Indian Women. Such a critique would highlight the heterogeneous subjectivity of Indian women. The images/selves of women as represented through these autobiographies are chosen with an aim to unmask and challenge, through ordering and positioning, the capitalist politics of literary representations of Indian women’s formation of 'her-self'. Methodologies and subjects associated with literature are considered essential for understanding and combating women’s oppression and empowerment. The representation of self in personal autobiographical history could be treated as the history of entire nation as personal is always political in feminist writings. The chosen narrators who are well-educated, well-settled, professional women of letters are capable of assessing, critiquing and re/articulating the shifting paradigms of women’s lives. Despite these factors, the textual spaces possess evidences to establish the facts that these women undergo sufferings, and they counter design cultural specific strategies for their empowerment. These metafictional self-conscious synecdoches extend to include the world of entire women. Thus these autobiographical texts could be reinterpreted as a searing critique of Indian society based on woman’s personal life.Keywords: ethnicity and diversity, gender studies, Indian women’s autobiographies, subjectivity
Procedia PDF Downloads 220825 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System
Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple
Abstract:
This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation
Procedia PDF Downloads 105824 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System
Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh
Abstract:
A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.Keywords: double perovskite, electrical conductivity, SEM, XRD
Procedia PDF Downloads 132823 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya
Authors: Aimen Saleh
Abstract:
The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.Keywords: Acacus, Ghadames , Libya, Silurian
Procedia PDF Downloads 143822 Enamel Structure Defect, the Rare Dental Anomaly: Isolated or Syndromic
Authors: Nehal F. Hassib, Rasha M. El Hossini, Inas M. Sayed, Maha R. Abouzeid, Nermeen A. Bayoumi, Aida M. Mosaad, Lamia K. Gadallah, Moataz Bellah A. T. Abdelbari, Heba A. El-Sayed, Hasnaa Elbendary, Ghada Abdel-Salam, Maha Zaki, Mostafa I. Mostafa, Mohamed S. Abdel-Hamid
Abstract:
Enamel, the outermost layer of the tooth crown, is the hardest dental tissue and serves as a protective barrier. Amelogenesis, the process of enamel formation, is regulated by multiple genes to ensure normal, defect-free enamel. Defective enamel manifests as hypoplasia or as amelogenesis imperfecta (AI), which may occur in isolation or as part of a syndrome. This study presents 29 patients from 18 unrelated families (16 females and 13 males) who exhibited distinctive enamel abnormalities. We conducted thorough clinical examinations and requested laboratory and radiological investigations. Blood samples were collected for molecular analysis, utilizing a targeted panel for known AI variants and whole exome sequencing for unknown variants. Eleven variants linked to enamel anomalies were identified: four genes associated with isolated AI (WDR72, ACP4, SLC24A4, and FAM83H) and seven associated with syndromic forms, including enamel renal syndrome (FAM20A), tricho-dento-osseous syndrome (DLX3), Jalili syndrome (CNNM4), and others linked to neurological and mitochondrial disorders, skeletal dysplasia, and peroxisome disorders. Abnormal oral and dental phenotypes in individuals may indicate serious inherited disorders. Enamel defects have significant implications for aesthetics, function, and patients' psychological well-being. Dental examination, alongside clinical and molecular investigations, is crucial for the accurate diagnosis and prediction of inherited conditions.Keywords: amelogenesis imperfecta, enamel defect, Enamel renal syndrome, DLX3, Jalili syndrome, WDR72, FAM83H, whole exome sequencing
Procedia PDF Downloads 25821 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units
Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro
Abstract:
In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.Keywords: capacitated clustering, k-means, genetic algorithm, districting problems
Procedia PDF Downloads 199820 Critical Analysis of the Caspian: The Role of Identity in Russia's Foreign Policy
Authors: Aidana Arynbek
Abstract:
This paper attempts to offer an alternative to the explanation of the politics of great powers in Caspian politics. Since many researchers have analysed the politics of great powers in the region with the focus on materialism, this paper attempts to bring a sociological inquiry into analysing inter-state behaviour. The constructivist concept of Alexander Wendt will be applied to analyse Russia’s relation with The United States, China and Iran; the main argument is emphasis on the power of ideational forces over material ones. Moreover, the innovative contribution of Wendt regarding the understanding of anarchy to the study of International Relations (IR) will be applied; in his words, ‘anarchy is what states make of it’. A neo-realist perspective implies that with the structure of international politics, Russia treats all great powers as rivals through engagement in power politics; however, Wendt’s approach is able to explain the reason behind the state’s behaviour towards power politics, and this is about not only international structure, but also identity. The understanding of identity answers the question of how Russia came about to follow different actions in relation to Iran and China in contrast to The United States. This paper will be divided into five chapters. The first chapter will explain the constructivism of Alexander Wendt; the second chapter will give a brief background to The Caspian Sea Region (CSR); the third chapter will explain the formation of Russia’s identity towards The United States, and this will be applied to analyse Russia’s relation to The U.S in The CSR. Similarly with China, the fourth chapter will explain Russia’s identity and its relations in The CSR, and finally, the fifth chapter will show Russia’s identity towards Iran and its relation to Iran in The CSR. It will be concluded that the analysis of the politics between great powers in seeking to access one of the richest regions, The Caspian Basin, will show that international politics is not fixed, but constructed by human action and cognition. Reality in the politics of great powers in The Caspian Sea Region is socially constructed. This paper is not interested in how things are, but how they became what they are. That is to say, how Russia’s foreign policies towards great powers became what they are.Keywords: Alexander Wendt, Caspian sea, identity, Russia, socially constructed
Procedia PDF Downloads 298819 Collagen Hydrogels Cross-Linked by Squaric Acid
Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska
Abstract:
Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.Keywords: collagen, squaric acid, cross-linking, hydrogel
Procedia PDF Downloads 388818 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran
Authors: Naser Ebadati
Abstract:
introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.Keywords: drilling mud weight, formation evaluation, sheer strees, safe window
Procedia PDF Downloads 9817 Failure Analysis of Pipe System at a Hydroelectric Power Plant
Authors: Ali Göksenli, Barlas Eryürek
Abstract:
In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factorKeywords: failure analysis, hydroelectric plant, crack, shock wave, welding seam
Procedia PDF Downloads 345816 Biomolecules Based Microarray for Screening Human Endothelial Cells Behavior
Authors: Adel Dalilottojari, Bahman Delalat, Frances J. Harding, Michaelia P. Cockshell, Claudine S. Bonder, Nicolas H. Voelcker
Abstract:
Endothelial Progenitor Cell (EPC) based therapies continue to be of interest to treat ischemic events based on their proven role to promote blood vessel formation and thus tissue re-vascularisation. Current strategies for the production of clinical-grade EPCs requires the in vitro isolation of EPCs from peripheral blood followed by cell expansion to provide sufficient quantities EPCs for cell therapy. This study aims to examine the use of different biomolecules to significantly improve the current strategy of EPC capture and expansion on collagen type I (Col I). In this study, four different biomolecules were immobilised on a surface and then investigated for their capacity to support EPC capture and proliferation. First, a cell microarray platform was fabricated by coating a glass surface with epoxy functional allyl glycidyl ether plasma polymer (AGEpp) to mediate biomolecule binding. The four candidate biomolecules tested were Col I, collagen type II (Col II), collagen type IV (Col IV) and vascular endothelial growth factor A (VEGF-A), which were arrayed on the epoxy-functionalised surface using a non-contact printer. The surrounding area between the printed biomolecules was passivated with polyethylene glycol-bisamine (A-PEG) to prevent non-specific cell attachment. EPCs were seeded onto the microarray platform and cell numbers quantified after 1 h (to determine capture) and 72 h (to determine proliferation). All of the extracellular matrix (ECM) biomolecules printed demonstrated an ability to capture EPCs within 1 h of cell seeding with Col II exhibiting the highest level of attachment when compared to the other biomolecules. Interestingly, Col IV exhibited the highest increase in EPC expansion after 72 h when compared to Col I, Col II and VEGF-A. These results provide information for significant improvement in the capture and expansion of human EPC for further application.Keywords: biomolecules, cell microarray platform, cell therapy, endothelial progenitor cells, high throughput screening
Procedia PDF Downloads 292815 Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation
Authors: Sutapa Som Chaudhury, Chitrangada Das Mukhopadhyay
Abstract:
Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease.Keywords: Alzheimer’s disease, alternative medication, amyloid beta, PEGylated peptide
Procedia PDF Downloads 209814 Gamma Irradiated Sodium Alginate and Phosphorus Fertilizer Enhances Seed Trigonelline Content, Biochemical Parameters and Yield Attributes of Fenugreek (Trigonella foenum-graecum L.)
Authors: Tariq Ahmad Dar, Moinuddin, M. Masroor A. Khan
Abstract:
There is considerable need in enhancing the content and yield of active constituents of medicinal plants keeping in view their massive demand worldwide. Different strategies have been employed to enhance the active constituents of medicinal plants and the use of phytohormones has been proved effective in this regard. Gamma-irradiated Sodium alginate (ISA) is known to elicit an array of plant defense responses and biological activities in plants. Considering the medicinal importance, a pot experiment was conducted to explore the effect of ISA and phosphorus on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). ISA spray treatments (0, 40, 80 and 120 mg L-1) were applied alone and in combination with 40 kg P ha-1 (P40). Crop performance was assessed in terms of plant growth characteristics, physiological attributes, seed yield and the content of seed trigonelline. Of the ten-treatments, P40 + 80 mg L−1 of ISA proved the best. The results showed that foliar spray of ISA alone or in combination with P40 augmented the plant vegetative growth, enzymatic activities, trigonelline content, trigonelline yield and economic yield of fenugreek. Application of 80 mg L−1 of ISA applied with P40 gave the best results for almost all the parameters studied compared to control or to 80 mg L−1 of ISA applied alone. This treatment increased the total content of chlorophyll, carotenoids, leaf -N, -P and -K and trigonelline compared to the control by 24.85 and 27.40%, 15 and 23.52%, 18.70 and 16.84%, 15.88 and 18.92%, 12 and 14.44%, at 60 and 90 DAS respectively. The combined application of 80 mg L−1 of ISA along with P40 resulted in the maximum increase in seed yield, trigonelline content and trigonelline yield by146, 34 and 232.41%, respectively, over the control. Gel permeation chromatography revealed the formation of low molecular weight fractions in ISA samples, containing even less than 20,000 molecular weight oligomers, which might be responsible for plant growth promotion in this study. Trigonelline content was determined by reverse phase high performance liquid chromatography (HPLC) with C-18 column.Keywords: gamma-irradiated sodium alginate, phosphorus, gel permeation chromatography, HPLC, trigonelline content, yield
Procedia PDF Downloads 322813 Biopotential of Introduced False Indigo and Albizia’s Weevils in Host Plant Control and Duration of Its Development Stages in Southern Regions of Panonian Basin
Authors: Renata Gagić-Serdar, Miroslava Markovic, Ljubinko Rakonjac, Aleksandar Lučić
Abstract:
The paper present the results of the entomological experimental studies of the biological, ecological, and (bionomic) insect performances, such as seasonal adaptation of introduced monophagous false indigo and albizias weevil’s Acanthoscelides pallidipennis Motschulsky. and Bruchidius terrenus (Sharp), Coleoptera: Chrysomelidae: Bruchinae, to phenological phases of aggressive invasive host plant Amorpha fruticosa L. and Albizia julibrissin (Fabales: Fabaceae) on the territory of Republic of Serbia with special attention on assessing and monitoring of new formed and detected inter species relations between autochthons parasite wasps from fauna (Hymenoptera: Chalcidoidea) and herbaceous seed weevil beetle. During 15 years (2006-2021), on approximately 30 localities, data analyses were done for observed experimental host plants from samples with statistical significance. Status of genera from families Hymenoptera: Chalcidoidea.: Pteromalidae and Eulophidae, after intensive investigations, has been trophicly identified. Recorded seed pest species of A. fruticosa or A. julibrissin (Fabales: Fabaceae) was introduced in Serbia and planted as ornamental trees, they also were put undergo different kinds of laboratory and field research tests during this period in a goal of collecting data about lasting each of develop stage of their seed beetles. Field generations in different stages were also monitored by continuous infested seed collecting and its disection. Established host plant-seed predator linkage was observed in correlation with different environment parameters, especially water level fluctuations in bank corridor formation stands and riparian cultures.Keywords: amorpha, albizia, chalcidoid wasp, invasiveness, weevils
Procedia PDF Downloads 95812 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields
Authors: Babak Rezaei, Arash Zargar Shoushtari
Abstract:
Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields
Procedia PDF Downloads 359811 Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B
Authors: Othman Elmahdy Othman, Agnés Germot, Daniel Petit, Muhammad Khodary, Abderrahman Maftah
Abstract:
Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%).Keywords: phylogeny, genetic biodiversity, MtDNA, cytochrome B, Egyptian sheep
Procedia PDF Downloads 347810 Assessment of Advanced Oxidation Process Applicability for Household Appliances Wastewater Treatment
Authors: Pelin Yılmaz Çetiner, Metin Mert İlgün, Nazlı Çetindağ, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Water scarcity is an inevitable problem affecting more and more people day by day. It is a worldwide crisis and a consequence of rapid population growth, urbanization and overexploitation. Thus, the solutions providing the reclamation of the wastewater are the desired approach. Wastewater contains various substances such as organic, soaps and detergents, solvents, biological substances, and inorganic substances. The physical properties of the wastewater differs regarding to its origin such as commerical, domestic or hospital usage. Thus, the treatment strategy of this type of wastewater is should be comprehensively investigated and properly treated. The advanced oxidation process comes up as a hopeful method associated with the formation of reactive hydroxyl radicals that are highly reactive to oxidize of organic pollutants. This process has a priority on other methods such as coagulation, flocuation, sedimentation and filtration since it was not cause any undesirable by-products. In the present study, it was aimed to investigate the applicability of advanced oxidation process for the treatment of household appliances wastewater. For this purpose, the laboratory studies providing the effectively addressing of the formed radicals to organic pollutants were carried out. Then the effect of process parameters were comprehensively studied by using response surface methodology, Box-Benhken experimental desing. The final chemical oxygen demand (COD) was the main output to evaluate the optimum point providing the expected COD removal. The linear alkyl benzene sulfonate (LAS), total dissolved solids (TDS) and color were measured for the optimum point providing the expected COD removal. Finally, present study pointed out that advanced oxidation process might be efficiently preffered to treat of the household appliances wastewater and the optimum process parameters provided that expected removal of COD.Keywords: advanced oxidation process, household appliances wastewater, modelling, water reuse
Procedia PDF Downloads 65809 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method
Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike
Abstract:
Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction
Procedia PDF Downloads 161808 The Impact of Garlic and Citrus Extracts on Energy Retention and Methane Production in Ruminants in vitro
Authors: Michael Graz, Natasha Hurril, Andrew Shearer
Abstract:
Research on feed supplementation with natural compounds is currently being intensively pursued with a view to improving energy utilisation in ruminants and mitigating the production of methane by these animals. Towards this end, a novel combination of extracts from garlic and bitter orange was therefore selected for trials on the basis of their previously published in vitro anti-methanogenic potential. Three separate in vitro experiments were conducted to determine energy utilisation and greenhouse gas production. These included use of rumen fluid from fistulated cows and sheep in batch culture, the Hohenheim gas test, and the Rusitec technique. Experimental and control arms were utilised, with 5g extracts per kilogram of total dietary dry matter (0.05g/kg active compounds) being used to supplement or not supplement the in vitro systems. Respiratory measurements were conducted on experimental day 1 for the batch culture and Hohenheim gas test and on day 14-21 for the Rusitec Technique (in a 21-day trial). Measurements included methane (CH4) production, total volatile fatty acid (VFA) concentration, molar proportions of acetate, propionate and butyrate and degradation of organic matter (Rusitec). CH4 production was reduced by 82% (±16%), 68% (±11%) and 37% (±4%) in the batch culture, Hohenheim gas test and Rusitec, respectively. Total VFA production was reduced by 13% (±2%) and 2% (±0.1%) in the batch culture and Hohenheim gas test whilst it was increased by 8% (±2%) in the Rusitec. Total VFA production was reduced in all tests between 2 and 10%, whilst acetate production was reduced between 10% and 29%. Propionate production which is an indicator of weight gain was increased in all cases between 16% and 30%. Butyrate production which is considered an indicator of potential milk yield was increased by between 6 and 11%. Degradation of organic matter in the Rusitec experiments was improved by 10% (±0.1%). In conclusion, the study demonstrated the potential of the combination of garlic and citrus extracts to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake.Keywords: citrus, garlic, methane, ruminants
Procedia PDF Downloads 330807 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions
Authors: Nicholas C. Rose, Christopher D. Spicer
Abstract:
The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological
Procedia PDF Downloads 98806 Marital Conflict and Adolescent Psycho-Social Well-Being: Mediation and Moderation Analysis
Authors: Nino KItoshvili
Abstract:
The family is an integral part of society, which plays a major role in the socialization and the formation of a person as a full member of society. The marital conflict even harms family members and finds a different effect on each member of the family, especially on children. There is a significant difference in the behavior of adolescents in conflict and non-conflict families. In times of marital conflict, adolescent psycho-social well-being is significantly dependent on socio-cultural mediating variables such as; Family income; Parenting style; The functioning of the family, and the existence of psycho-social support. In a family with low economic performance, low psychosocial harassment, family dysfunction, and bad parenting style, marital conflict significantly increases the risk of deteriorating adolescent psycho-social well-being. At this time, to support the well-being of the child, a special role is played by improving the marital relationship, which must be supported by state and community services. There are very few family studies in this field in Georgia, the therapeutic direction of the family is at an early stage, and there are no family-supporting psycho-social programs. This increases the chances of adolescent psycho-social well-being deteriorating amd socialization problems. The study will examine the mediating variables of marital conflict and adolescent psycho-social well-being and will attempt to determine their mediating and moderating role. Research suggests that an increase in the rate of marital conflict is associated with a decrease in child well-being. The well-being of children in conflict families is lower than that of children in non-conflict families and depends on the variables of mediating variables. Quantitative research will be conducted to study this phenomenon through a questionnaire developed and standardized in the research process. The study will be attended by families living in Georgia - spouses (married) and their adolescent children. By analyzing the data obtained from the research, we will be able to determine in which cases the intensity of the relationship between the marital conflict and the well-being of the adolescent increases or decreases; To conclude the mediating and moderating role of mediating variables and also to make relevant recommendations to reduce the negative impact on the psycho-social well-being of a child of marital conflict.Keywords: adolescent, mediation, moderation, conflict, couple, well-being
Procedia PDF Downloads 109805 The Moderating Role of Perceived University Environment in the Formation of Entrepreneurial Intention among Creative Industries Students
Authors: Patrick Ebong Ebewo
Abstract:
The trend of high unemployment levels globally is a growing concern, which suggests that university students especially those studying the creative industries are most likely to face unemployment upon completion of their studies. Therefore the effort of university in fostering entrepreneurial knowledge is equally important to the development of student’s soft skill. The purpose of this paper is to assess the significance of perceived university environment and perceived educational support that influencing University students’ intention in starting their own business in the future. Thus, attempting to answer the question 'How does perceived university environment affect students’ attitude towards entrepreneurship as a career option, perceived entrepreneurial abilities, subjective norm and entrepreneurial intentions?' The study is based on the Theory of Planned Behaviour model adapted from previous studies and empirically tested on graduates at the Tshwane University of Technology. A sample of 150 graduates from the Arts and Design graduates took part in the study and data collected were analysed using structural equation modelling (SEM). Our findings seem to suggest the indirect impact of perceived university environment on entrepreneurial intention through perceived environment support and perceived entrepreneurial abilities. Thus, any increase in perceived university environment might influence students to become entrepreneurs. Based on these results, it is recommended that: (a) Tshwane University of Technology and other universities of technology should establish an ‘Entrepreneurship Internship Programme’ as a tool for stimulated work integrated learning. Post-graduation intervention could be implemented by the development of a ‘Graduate Entrepreneurship Program’ which should be embedded in the Bachelor of Technology (B-Tech now Advance Diploma) and Postgraduate courses; (b) Policymakers should consider the development of a coherent national policy framework that addresses entrepreneurship for the Arts/creative industries sector. This would create the enabling environment for the evolution of Higher Education Institutions from merely Teaching, Learning & Research to becoming drivers for creative entrepreneurship.Keywords: business venture, entrepreneurship education, entrepreneurial intent, university environment
Procedia PDF Downloads 338804 Anti Oxidant Ayurvedic Rasyan Herbs Concept to Disease Managment
Authors: Mohammed Khalil Ur Rahman, Khanita Aammatullh
Abstract:
Rasayana is one of the eight clinical specialities of classical Ayurveda The disease preventive and health promotive approach of ‘Ayurveda’, which takes into consideration the whole body, mind and spirit while dealing with the maintenance of health, promotion of health and treating ailments is holistic and finds increasing acceptability in many regions of the world. Ancient Ayurvedic physicians had developed certain dietary and therapeutic measures to arrest/delay ageing and rejuvenating whole functional dynamics of the body system. This revitalization and rejuvenation is known as the ‘Rasayan chikitsa’ (rejuvenation therapy). Traditionally, Rasayana drugs are used against a plethora of seemingly diverse disorders with no pathophysiological connections according to modern medicine. Though, this group of plants generally possesses strong antioxidant activity, only a few have been investigated in detail. Over about 100 disorders like rheumatoid arthritis, hemorrhagic shock, CVS disorders, cystic fibrosis, metabolic disorders, neurodegenerative diseases, gastrointestinal ulcerogenesis and AIDS have been reported as reactive oxygen species mediated. In this review, the role of free radicals in these diseases has been briefly reviewed. ‘Rasayana’ plants with potent antioxidant activity have been reviewed for their traditional uses, and mechanism of antioxidant action. Fifteen such plants have been dealt with in detail and some more plants with less work have also been reviewed briefly The Rasayanas are rejuvenators, nutritional supplements and possess strong antioxidant activity. They also have antagonistic actions on the oxidative stressors, which give rise to the formation of different free radicals. Ocimum sanctum, Tinospora cordifolia, Emblica officinalis, Convolvulus pluricaulis, Centella asiatica, Bacopa monniera, Withania somnifera, Triphala rasayana, Chyawanprash, Brahma rasayana are very important rasayanas which are described in ayurveda and proved by new researches.Keywords: rasayana, antioxidant activity, Bacopa monniera, Withania somnifera Triphala, chyawanprash
Procedia PDF Downloads 264803 Producing Carbon Nanoparticles from Agricultural and Municipal Wastes
Authors: Kanik Sharma
Abstract:
In the year of 2011, the global production of carbon nano-materials (CNMs) was around 3,500 tons, and it is projected to expand at a compound annual growth rate of 30.6%. Expanding markets for applications of CNMs, such as carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs), place ever-increasing demands on lowering their production costs. Current technologies for CNM generation require intensive premium feedstock consumption and employ costly catalysts; they also require input of external energy. Industrial-scale CNM production is conventionally achieved through chemical vapor deposition (CVD) methods which consume a variety of expensive premium chemical feedstocks such as ethylene, carbon monoxide (CO) and hydrogen (H2); or by flame synthesis techniques, which also consume premium feedstock fuels. Additionally, CVD methods are energy-intensive. Renewable and replenishable feedstocks, such as those found in municipal, industrial, agricultural recycling streams have a more judicious reason for usage, in the light of current emerging needs for sustainability. Agricultural sugarcane bagasse and corn residues, scrap tire chips as well as post-consumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings when either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation result in the formation of gaseous carbon-bearing effluents which when channeled into a heated reactor, produce CNMs, including carbon nano-tubes, catalytically synthesized therein on stainless steel meshes. The structure of the nano-material synthesized depends on the type of feedstock available for pyrolysis, and can be determined by analysing the feedstock. These feedstocks could supersede the use of costly and often toxic or highly-flammable chemicals such as hydrocarbon gases, carbon monoxide and hydrogen, which are commonly used as feedstocks in current nano-manufacturing process for CNMs.Keywords: nanomaterials, waste plastics, sugarcane bagasse, pyrolysis
Procedia PDF Downloads 230802 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling
Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna
Abstract:
The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.Keywords: piers, scouring, HEC-RAS, physical model
Procedia PDF Downloads 17801 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment
Authors: K. Sushma Varma, Rajesh Singh
Abstract:
Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria
Procedia PDF Downloads 102800 Solubility of Carbon Dioxide in Methoxy and Nitrile-Functionalized Ionic Liquids
Authors: D. A. Bruzon, G. Tapang, I. S. Martinez
Abstract:
Global warming and climate change are significant environmental concerns, which require immediate global action in carbon emission mitigation. The capture, sequestration, and conversion of carbon dioxide to other products such as methane or ethanol are ways to control excessive emissions. Ionic liquids have shown great potential among the materials studied as carbon capture solvents and catalysts in the reduction of CO2. In this study, ionic liquids comprising of a methoxy (-OCH3) and cyano (-CN) functionalized imidazolium cation, [MOBMIM] and [CNBMIM] respectively, paired with tris(pentafluoroethyl)trifluorophosphate [FAP] anion were evaluated as effective capture solvents, and organocatalysts in the reduction of CO2. An in-situ electrochemical set-up, which can measure controlled amounts of CO2 both in the gas and in the ionic liquid phase, was used. Initially, reduction potentials of CO2 in the CO2-saturated ionic liquids containing the internal standard cobaltocene were determined using cyclic voltammetry. Chronoamperometric transients were obtained at potentials slightly less negative than the reduction potentials of CO2 in each ionic liquid. The time-dependent current response was measured under a controlled atmosphere. Reduction potentials of CO2 in methoxy and cyano-functionalized [FAP] ionic liquids were observed to occur at ca. -1.0 V (vs. Cc+/Cc), which was significantly lower compared to the non-functionalized analog [PMIM][FAP], with an observed reduction potential of CO2 at -1.6 V (vs. Cc+/Cc). This decrease in the potential required for CO2 reduction in the functionalized ionic liquids shows that the functional groups methoxy and cyano effectively decreased the free energy of formation of the radical anion CO2●⁻, suggesting that these electrolytes may be used as organocatalysts in the reduction of the greenhouse gas. However, upon analyzing the solubility of the gas in each ionic liquid, [PMIM][FAP] showed the highest absorption capacity, at 4.81 mM under saturated conditions, compared to [MOBMIM][FAP] at 1.86 mM, and [CNBMIM][FAP] at 0.76 mM. Also, calculated Henry’s constant determined from the concentration-pressure graph of each functionalized ionic liquid shows that the groups -OCH3 and -CN attached terminal to a C4 alkyl chain do not significantly improve CO2 solubility.Keywords: carbon capture, CO2 reduction, electrochemistry, ionic liquids
Procedia PDF Downloads 404799 Ancient Iran Water Technologies
Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand
Abstract:
The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran
Procedia PDF Downloads 112