Search results for: likelihood estimation method
18031 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 37118030 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics
Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact
Procedia PDF Downloads 40318029 Application of Liquid Chromatographic Method for the in vitro Determination of Gastric and Intestinal Stability of Pure Andrographolide in the Extract of Andrographis paniculata
Authors: Vijay R. Patil, Sathiyanarayanan Lohidasan, K. R. Mahadik
Abstract:
Gastrointestinal stability of andrographolide was evaluated in vitro in simulated gastric (SGF) and intestinal (SIF) fluids using a validated HPLC-PDA method. The method was validated using a 5μm ThermoHypersil GOLD C18column (250 mm × 4.0 mm) and mobile phase consisting of water: acetonitrile; 70: 30 (v/v) delivered isocratically at a flow rate of 1 mL/min with UV detection at 228 nm. Andrographolide in pure form and extract Andrographis paniculata was incubated at 37°C in an incubator shaker in USP simulated gastric and intestinal fluids with and without enzymes. Systematic protocol as per FDA Guidance System was followed for stability study and samples were assayed at 0, 15, 30 and 60 min intervals for gastric and at 0, 15, 30, 60 min, 1, 2 and 3 h for intestinal stability study. Also, the stability study was performed up to 24 h to see the degradation pattern in SGF and SIF (with enzyme and without enzyme). The developed method was found to be accurate, precise and robust. Andrographolide was found to be stable in SGF (pH ∼ 1.2) for 1h and SIF (pH 6.8) up to 3 h. The relative difference (RD) of amount of drug added and found at all time points was found to be < 3%. The present study suggests that drug loss in the gastrointestinal tract takes place may be by membrane permeation rather than a degradation process.Keywords: andrographolide, Andrographis paniculata, in vitro, stability, gastric, Intestinal HPLC-PDA
Procedia PDF Downloads 24318028 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 8118027 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model
Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga
Abstract:
The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives
Procedia PDF Downloads 11518026 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation
Authors: Manoj Kumar, Rajesh Kumar
Abstract:
With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.Keywords: depletion of reserves, energy consumption and generation, emmissions, global warming, renewable sources
Procedia PDF Downloads 43318025 An Image Stitching Approach for Scoliosis Analysis
Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris
Abstract:
Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.Keywords: image stitching, MACE filter, panorama image, scoliosis
Procedia PDF Downloads 46118024 Wearable Music: Generation of Costumes from Music and Generative Art and Wearing Them by 3-Way Projectors
Authors: Noriki Amano
Abstract:
The final goal of this study is to create another way in which people enjoy music through the performance of 'Wearable Music'. Concretely speaking, we generate colorful costumes in real- time from music and to realize their dressing by projecting them to a person. For this purpose, we propose three methods in this study. First, a method of giving color to music in a three-dimensionally way. Second, a method of generating images of costumes from music. Third, a method of wearing the images of music. In particular, this study stands out from other related work in that we generate images of unique costumes from music and realize to wear them. In this study, we use the technique of generative arts to generate images of unique costumes and project the images to the fog generated around a person from 3-way using projectors. From this study, we can get how to enjoy music as 'wearable'. Furthermore, we are also able to have the prospect of unconventional entertainment based on the fusion between music and costumes.Keywords: entertainment computing, costumes, music, generative programming
Procedia PDF Downloads 17418023 Taguchi Method for Analyzing a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method
Procedia PDF Downloads 19118022 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method
Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy
Abstract:
In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton
Procedia PDF Downloads 11418021 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks
Authors: Amir Alirezaei, Shahram Vahdani
Abstract:
This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.Keywords: deformation demand, drift, setback, tall building
Procedia PDF Downloads 42418020 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design
Procedia PDF Downloads 37418019 Risk Management in Industrial Supervision Projects
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Several problems in industrial supervision software development projects may lead to the delay or cancellation of projects. These problems can be avoided or contained by using identification methods, analysis and control of risks. These procedures can give an overview of the possible problems that can happen in the projects and what are the immediate solutions. Therefore, we propose a risk management method applied to the teaching and development of industrial supervision software. The method is developed through a literature review and previous projects can be divided into phases of management and have basic features that are validated with experimental research carried out by mechatronics engineering students and professionals. The management is conducted through the stages of identification, analysis, planning, monitoring, control and communication of risks. Programmers use a method of prioritizing risks considering the gravity and the possibility of occurrence of the risk. The outputs of the method indicate which risks occurred or are about to happen. The first results indicate which risks occur at different stages of the project and what risks have a high probability of occurring. The results show the efficiency of the proposed method compared to other methods, showing the improvement of software quality and leading developers in their decisions. This new way of developing supervision software helps students identify design problems, evaluate software developed and propose effective solutions. We conclude that the risk management optimizes the development of the industrial process control software and provides higher quality to the product.Keywords: supervision software, risk management, industrial supervision, project management
Procedia PDF Downloads 35918018 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 30218017 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite
Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi
Abstract:
Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction
Procedia PDF Downloads 16218016 Ex-Post Export Data for Differentiated Products Revealing the Existence of Productcycles
Authors: Ranajoy Bhattcharyya
Abstract:
We estimate international product cycles as shifting product spaces by using 1976 to 2010 UN Comtrade data on all differentiated tradable products in all countries. We use a product space approach to identify the representative product baskets of high-, middle and low-income countries and then use these baskets to identify the patterns of change in comparative advantage of countries over time. We find evidence of a product cycle in two senses: First, high-, middle- and low-income countries differ in comparative advantage, and high-income products migrate to the middle-income basket. A similar pattern is observed for middle- and low-income countries. Our estimation of the lag shows that middle-income countries tend to quickly take up the products of high-income countries, but low-income countries take a longer time absorbing these products. Thus, the gap between low- and middle-income countries is considerably higher than that between middle- and high-income nations.Keywords: product cycle, comparative advantage, representative product basket, ex-post data
Procedia PDF Downloads 42218015 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study
Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen
Abstract:
One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction
Procedia PDF Downloads 16018014 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method
Authors: Md. Moinul Islam, N. M. Golam Zakaria
Abstract:
Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function
Procedia PDF Downloads 22318013 New Approach to Construct Phylogenetic Tree
Authors: Ouafae Baida, Najma Hamzaoui, Maha Akbib, Abdelfettah Sedqui, Abdelouahid Lyhyaoui
Abstract:
Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes.Keywords: hierarchical classification, classification methods, structure of tree, genes, phylogenetic analysis
Procedia PDF Downloads 51118012 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 19218011 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement
Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad
Abstract:
An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter
Procedia PDF Downloads 40018010 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape
Authors: Chen Bo, Wen Zengping
Abstract:
Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape
Procedia PDF Downloads 29518009 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy
Authors: Varsha Singh, Kishan Fuse
Abstract:
This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization
Procedia PDF Downloads 31018008 A Review of Fractal Dimension Computing Methods Applied to Wear Particles
Authors: Manish Kumar Thakur, Subrata Kumar Ghosh
Abstract:
Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles.Keywords: fractal dimension, morphological analysis, wear, wear particles
Procedia PDF Downloads 49118007 Usability in E-Commerce Websites: Results of Eye Tracking Evaluations
Authors: Beste Kaysı, Yasemin Topaloğlu
Abstract:
Usability is one of the most important quality attributes for web-based information systems. Specifically, for e-commerce applications, usability becomes more prominent. In this study, we aimed to explore the features that experienced users seek in e-commerce applications. We used eye tracking method in evaluations. Eye movement data are obtained from the eye-tracking method and analyzed based on task completion time, number of fixations, as well as heat map and gaze plot measures. The results of the analysis show that the eye movements of participants' are too static in certain areas and their areas of interest are scattered in many different places. It has been determined that this causes users to fail to complete their transactions. According to the findings, we outlined the issues to improve the usability of e-commerce websites. Then we propose solutions to identify the issues. In this way, it is expected that e-commerce sites will be developed which will make experienced users more satisfied.Keywords: e-commerce websites, eye tracking method, usability, website evaluations
Procedia PDF Downloads 18218006 Digital Transformation, Financing Microstructures, and Impact on Well-Being and Income Inequality
Authors: Koffi Sodokin
Abstract:
Financing microstructures are increasingly seen as a means of financial inclusion and improving overall well-being in developing countries. In practice, digital transformation in finance can accelerate the optimal functioning of financing microstructures, such as access by households to microfinance and microinsurance. Large households' access to finance can lead to a reduction in income inequality and an overall improvement in well-being. This paper explores the impact of access to digital finance and financing microstructures on household well-being and the reduction of income inequality. To this end, we use the propensity score matching, the double difference, and the smooth instrumental quantile regression as estimation methods with two periods of survey data. The paper uses the FinScope consumer data (2016) and the Harmonized Living Standards Measurement Study (2018) from Togo in a comparative perspective. The results indicate that access to digital finance, as a cultural game changer, and to financing microstructures improves overall household well-being and contributes significantly to reducing income inequality.Keywords: financing microstructure, microinsurance, microfinance, digital finance, well-being, income inequality
Procedia PDF Downloads 9118005 Urea Amperometric Biosensor Based on Entrapment Immobilization of Urease onto a Nanostructured Polypyrrol and Multi-Walled Carbon Nanotube
Authors: Hamide Amani, Afshin FarahBakhsh, Iman Farahbakhsh
Abstract:
In this paper, an amprometric biosensor based on surface modified polypyrrole (PPy) has been developed for the quantitative estimation of urea in aqueous solutions. The incorporation of urease (Urs) into a bipolymeric substrate consisting of PPy was performed by entrapment to the polymeric matrix, PPy acts as amperometric transducer in these biosensors. To increase the membrane conductivity, multi-walled carbon nanotubes (MWCNT) were added to the PPy solution. The entrapped MWCNT in PPy film and the bipolymer layers were prepared for construction of Pt/PPy/MWCNT/Urs. Two different configurations of working electrodes were evaluated to investigate the potential use of the modified membranes in biosensors. The evaluation of two different configurations of working electrodes suggested that the second configuration, which was composed of an electrode-mediator-(pyrrole and multi-walled carbon nanotube) structure and enzyme, is the best candidate for biosensor applications.Keywords: urea biosensor, polypyrrole, multi-walled carbon nanotube, urease
Procedia PDF Downloads 33118004 Reliability Qualification Test Plan Derivation Method for Weibull Distributed Products
Authors: Ping Jiang, Yunyan Xing, Dian Zhang, Bo Guo
Abstract:
The reliability qualification test (RQT) is widely used in product development to qualify whether the product meets predetermined reliability requirements, which are mainly described in terms of reliability indices, for example, MTBF (Mean Time Between Failures). It is widely exercised in product development. In engineering practices, RQT plans are mandatorily referred to standards, such as MIL-STD-781 or GJB899A-2009. But these conventional RQT plans in standards are not preferred, as the test plans often require long test times or have high risks for both producer and consumer due to the fact that the methods in the standards only use the test data of the product itself. And the standards usually assume that the product is exponentially distributed, which is not suitable for a complex product other than electronics. So it is desirable to develop an RQT plan derivation method that safely shortens test time while keeping the two risks under control. To meet this end, for the product whose lifetime follows Weibull distribution, an RQT plan derivation method is developed. The merit of the method is that expert judgment is taken into account. This is implemented by applying the Bayesian method, which translates the expert judgment into prior information on product reliability. Then producer’s risk and the consumer’s risk are calculated accordingly. The procedures to derive RQT plans are also proposed in this paper. As extra information and expert judgment are added to the derivation, the derived test plans have the potential to shorten the required test time and have satisfactory low risks for both producer and consumer, compared with conventional test plans. A case study is provided to prove that when using expert judgment in deriving product test plans, the proposed method is capable of finding ideal test plans that not only reduce the two risks but also shorten the required test time as well.Keywords: expert judgment, reliability qualification test, test plan derivation, producer’s risk, consumer’s risk
Procedia PDF Downloads 14118003 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: Ayhan Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue
Procedia PDF Downloads 46618002 A Theoretical Study of Accelerating Neutrons in LINAC Using Magnetic Gradient Method
Authors: Chunduru Amareswara Prasad
Abstract:
The main aim of this proposal it to reveal the secrets of the universe by accelerating neutrons. The proposal idea in its abridged version speaks about the possibility of making neutrons accelerate with help of thermal energy and magnetic energy under controlled conditions. Which is helpful in revealing the hidden secrets of the universe namely dark energy and in finding properties of Higgs boson. The paper mainly speaks about accelerating neutrons to near velocity of light in a LINAC, using magnetic energy by magnetic pressurizers. The center of mass energy of two colliding neutron beams is 94 GeV (~0.5c) can be achieved using this method. The conventional ways to accelerate neutrons has some constraints in accelerating them electromagnetically as they need to be separated from the Tritium or Deuterium nuclei. This magnetic gradient method provides efficient and simple way to accelerate neutrons.Keywords: neutron, acceleration, thermal energy, magnetic energy, Higgs boson
Procedia PDF Downloads 327