Search results for: radio networks
745 Implicit and Explicit Mechanisms of Emotional Contagion
Authors: Andres Pinilla Palacios, Ricardo Tamayo
Abstract:
Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation
Procedia PDF Downloads 316744 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 183743 A Multi-Science Study of Modern Synergetic War and Its Information Security Component
Authors: Alexander G. Yushchenko
Abstract:
From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.Keywords: cyber and information security, hybrid war, psycho-information technology, synergetic war, Ruschism
Procedia PDF Downloads 134742 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users
Authors: Devon Brown, Liu Chunmei
Abstract:
This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework
Procedia PDF Downloads 20741 Analytical Study: An M-Learning App Reflecting the Factors Affecting Student’s Adoption of M-Learning
Authors: Ahmad Khachan, Ahmet Ozmen
Abstract:
This study aims to introduce a mobile bite-sized learning concept, a mobile application with social networks motivation factors that will encourage students to practice critical thinking, improve analytical skills and learn knowledge sharing. We do not aim to propose another e-learning or distance learning based tool like Moodle and Edmodo; instead, we introduce a mobile learning tool called Interactive M-learning Application. The tool reconstructs and strengthens the bonds between educators and learners and provides a foundation for integrating mobile devices in education. The application allows learners to stay connected all the time, share ideas, ask questions and learn from each other. It is built on Android since the Android has the largest platform share in the world and is dominating the market with 74.45% share in 2018. We have chosen Google-Firebase server for hosting because of flexibility, ease of hosting and real time update capabilities. The proposed m-learning tool was offered to four groups of university students in different majors. An improvement in the relation between the students, the teachers and the academic institution was obvious. Student’s performance got much better added to better analytical and critical skills advancement and moreover a willingness to adopt mobile learning in class. We have also compared our app with another tool in the same class for clarity and reliability of the results. The student’s mobile devices were used in this experimental study for diversity of devices and platform versions.Keywords: education, engineering, interactive software, undergraduate education
Procedia PDF Downloads 155740 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 96739 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 311738 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.Keywords: decentralized systems, distributed generation, microgrids, renewable energy
Procedia PDF Downloads 133737 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 178736 Women Students’ Management of Alcohol- Related Sexual Risk at a South African University
Authors: Shakila Singh
Abstract:
This research was conducted at a selected South African university campus with women students who drink alcohol. The purpose of the study was to examine their perspectives on the role of alcohol in their lives, their understandings about women’s vulnerability to alcohol-related sexual risk and their strategies against these. The study draws on feminist principles and practices to challenge gendered inequalities that legitimate and facilitate violence against women. Recognising the danger of focusing on risk management in ways that place the burden of responsibility entirely on young women to prevent their violation, this article focuses on women students’ agency in managing risk while taking up opportunities for self-discovery. Participation was voluntary, and a student-researcher administered an open-ended questionnaire to 55 participants. The findings suggest that young women position alcohol- use as a common activity at university, and that it gives them much pleasure. They recognise that it is riskier for women and articulate valuable strategies to manage the risk to their sexual safety when drinking. These include drinking within supportive networks, avoiding financial dependence, and managing their alcohol intake. This article argues that alcohol at university is an integral part of expressions of gender and sexuality and that risk-taking is a normal part of university students’ lives. Consequently, arguments about equality need to consider risk-taking as part of young people’s lives and promote ways of managing alcohol-related risks, rather than imagining that alcohol can be avoided entirely.Keywords: alcohol-related sexual risk, drinking at university, managing risk, women students
Procedia PDF Downloads 104735 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 293734 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance
Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.
Abstract:
The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, PhilippinesKeywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure
Procedia PDF Downloads 101733 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer
Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie
Abstract:
Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy
Procedia PDF Downloads 374732 Multimodal Sentiment Analysis With Web Based Application
Authors: Shreyansh Singh, Afroz Ahmed
Abstract:
Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.Keywords: sentiment analysis, RNN, LSTM, word embeddings
Procedia PDF Downloads 119731 The Analysis of Internet and Social Media Behaviors of the Students in Vocational High School
Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok
Abstract:
Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer technologies and in parallel with this, internet technology. While these developments in the world, has a very large young population and a rapidly evolving electronic communications infrastructure Turkey has been affected by this situation. Researches has shown that almost all young people in Turkey has an account in a social network. Especially becoming common of mobile devices causes data traffic in social networks to increase. In this study, has been surveyed on students in the different age groups and at the Selcuk University Vocational School of Technical Sciences Department of Computer Technology. Student’s opinions about the use of internet and social media has been gotten. Using the Internet and social media skills, purposes, operating frequency, access facilities and tools, social life and effects on vocational education etc. have been explored. Both internet and use of social media positive and negative effects on this department students results have been obtained by the obtained findings evaluating from various aspects. Relations and differences have been found out with statistic.Keywords: computer technologies, internet use, social network, higher vocational school
Procedia PDF Downloads 542730 The Information-Seeking Behaviour of Kuwaiti Judges (KJs)
Authors: Essam Mansour
Abstract:
The key purpose of this study is to show information-seeking behaviour of Kuwaiti Judges (KJs). Being one of the few studies about the information needs and information-seeking behaviour conducted in Arab and developing countries, this study is a pioneer one among many studies conducted in information seeking, especially with this significant group of information users. The authors tried to investigate this seeking behavior in terms of KJs' thoughts, perceptions, motivations, techniques, preferences, tools and barriers met when seeking information. The authors employed a questionnaire, with a response rate 77.2 percent. This study showed that most of KJs were likely to be older, educated and with a work experience ranged from new to old experience. There is a statistically reliable significant difference between KJs' demographic characteristics and some sources of information, such as books, encyclopedias, references and mass media. KJs were using information moderately to make a decision, to be in line with current events, to collect statistics and to make a specific/general research. The office and home were the most frequent location KJs were accessing information from. KJs' efficiency level of the English language is described to be moderately good, and a little number of them confirmed that their efficiency level of French was not bad. The assistance provided by colleagues, followed by consultants, translators, sectaries and librarians were found to be most strong types of assistance needed when seeking information. Mobile apps, followed by PCs, information networks (the Internet) and information databases were the highest technology tool used by KJs. Printed materials, followed by non-printed and audiovisual materials were the most preferred information formats KJs use. The use of languages, the recency of information and the place of information, the deficit role of the library to deliver information were at least significant barriers to KJs when seeking information.Keywords: information users, information-seeking behaviour, information needs, judges, Kuwait
Procedia PDF Downloads 307729 Survival Strategies of Street Children Using the Urban Space: A Case Study at Sealdah Railway Station Area, Kolkata, West Bengal, India
Authors: Sibnath Sarkar
Abstract:
Developing countries are facing many Social problems. In India, too there are several such problems. The problem of street children is one of them. No country or city anywhere in the world today is without the presence of street children, but the problem is most acute in developing countries. Thousands of street children can be seen in our populous cities like Mumbai, Kolkata, Delhi, and Chennai. Most of them are in the age group of 5-15 years. The number of street children is increasing gradually. Poverty, unemployment, rapid urbanization, rural-urban migrations are the root causes of street children. Being deprive from many of their, they have escaped to the street as a safe place for living. Street children always related with the urban spaces in the developing world and it represents a sad outcome of the rapid urbanization process. After coming to the streets, these children have to cope with the new situation every day. They also adopt or develop many complex survival strategies and a variety of different informal or even illegal activities in public space and form supportive social networks in order to survive in street life. Street children use the different suitable urban spaces as their earning, living, entertaining spot. Therefore, the livelihoods of young people on the street should analyze in relation to the spaces they use, as well as their age and length of stay on the streets. This paper tries to explore the livelihood strategies and copping situation of street children in Sealdah station area. One hundred seventy-five street living children are included in the study living in and around the railway station.Keywords: strategies, street children, survive, urban-space
Procedia PDF Downloads 361728 A Qualitative Study of a Workplace International Employee Health Program
Authors: Jennifer Bradley
Abstract:
With opportunities to live and work abroad on the rise, effective preparation and support for international employees needs to be addressed within the work-site. International employees must build new habits, routines and social networks in an unfamiliar culture. Culture shock typically occurs within the first year and can affect both physical and psychological health. Employers have the opportunity to support staff through the adaptation process and foster healthy habits and routines. Cross-cultural training that includes a combination of instructional teaching, cultural experiences, and practice, is shown to increase the international employee adaptation process. However, little evidence demonstrates that organizations provide all of these aspects for international employees. The occupational therapy practitioner (OTP) offers a unique perspective focusing on the employee transactional relationship and engagement of meaningful occupations to enhance and enable participation in roles, habits and routines within new cultural contexts. This paper examines one such program developed and implemented by an OTP at the New England Center for Children, in Abu Dhabi, United Arab Emirates. The effectiveness of the program was assessed via participant feedback and concluded that an international employee support program that focuses on a variety of meaningful experiences and knowledge can empower employees to navigate healthy practices, develop habits and routines, and foster positive inter-cultural relationships in the organization and community.Keywords: occupational therapy practitioner, cross cultural training, international employee health, international employee support
Procedia PDF Downloads 159727 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem
Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo
Abstract:
At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system
Procedia PDF Downloads 399726 Metabolome-based Profiling of African Baobab Fruit (Adansonia Digitata L.) Using a Multiplex Approach of MS and NMR Techniques in Relation to Its Biological Activity
Authors: Marwa T. Badawy, Alaa F. Bakr, Nesrine Hegazi, Mohamed A. Farag, Ahmed Abdellatif
Abstract:
Diabetes Mellitus (DM) is a chronic disease affecting a large population worldwide. Africa is rich in native medicinal plants with myriad health benefits, though less explored towards the development of specific drug therapy as in diabetes. This study aims to determine the in vivo antidiabetic potential of the well-reported and traditionally used fruits of Baobab (Adansonia digitata L.) using STZ induced diabetic model. The in-vitro cytotoxic and antioxidant properties were examined using MTT assay on L-929 fibroblast cells and DPPH antioxidant assays, respectively. The extract showed minimal cytotoxicity with an IC50 value of 105.7 µg/mL. Histopathological and immunohistochemical investigations showed the hepatoprotective and the renoprotective effects of A. digitata fruits’ extract, implying its protective effects against diabetes complications. These findings were further supported by biochemical assays, which showed that i.p., injection of a low dose (150 mg/kg) of A. digitata twice a week lowered the fasting blood glucose levels, lipid profile, hepatic and renal markers. For a comprehensive overview of extract metabolites composition, ultrahigh performance (UHPLC) analysis coupled to high-resolution tandem mass spectrometry (HRMS/MS) in synchronization with molecular networks led to the annotation of 77 metabolites, among which 50% are reported for the first time in A. digitata fruits.Keywords: adansonia digital, diabetes mellitus, metabolomics, streptozotocin, Sprague, dawley rats
Procedia PDF Downloads 165725 Dental Ethics versus Malpractice, as Phenomenon with a Growing Trend
Authors: Saimir Heta, Kers Kapaj, Rialda Xhizdari, Ilma Robo
Abstract:
Dealing with emerging cases of dental malpractice with justifications that stem from the clear rules of dental ethics is a phenomenon with an increasing trend in today's dental practice. Dentists should clearly understand how far the limit of malpractice goes, with or without minimal or major consequences, for the affected patient, which can be justified as a complication of dental treatment, in support of the rules of dental ethics in the dental office. Indeed, malpractice can occur in cases of lack of professionalism, but it can also come as a consequence of anatomical and physiological limitations in the implementation of the dental protocols, predetermined and indicated by the patient in the paragraph of the treatment plan in his personal card. This study is of the review type with the aim of the latest findings published in the literature about the problem of dealing with these phenomena. The combination of keywords is done in such a way with the aim to give the necessary space for collecting the right information in the networks of publications about this field, always first from the point of view of the dentist and not from that of the lawyer or jurist. From the findings included in this article, it was noticed the diversity of approaches towards the phenomenon depends on the different countries based on the legal basis that these countries have. There is a lack of or a small number of articles that touch on this topic, and these articles are presented with a limited number of data on the same topic. Conclusions: Dental malpractice should not be hidden under the guise of various dental complications that we justify with the strict rules of ethics for patients treated in the dental chair. The individual experience of dental malpractice must be published with the aim of serving as a source of experience for future generations of dentists.Keywords: dental ethics, malpractice, professional protocol, random deviation
Procedia PDF Downloads 96724 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 428723 An Integrated Framework for Seismic Risk Mitigation Decision Making
Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani
Abstract:
One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.Keywords: decision making, demolition, construction management, seismic retrofit
Procedia PDF Downloads 237722 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution
Authors: Pitigalage Chamath Chandira Peiris
Abstract:
A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.Keywords: single image super resolution, computer vision, vision transformers, image restoration
Procedia PDF Downloads 105721 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 201720 Vehicle Routing Problem Considering Alternative Roads under Triple Bottom Line Accounting
Authors: Onur Kaya, Ilknur Tukenmez
Abstract:
In this study, we consider vehicle routing problems on networks with alternative direct links between nodes, and we analyze a multi-objective problem considering the financial, environmental and social objectives in this context. In real life, there might exist several alternative direct roads between two nodes, and these roads might have differences in terms of their lengths and durations. For example, a road might be shorter than another but might require longer time due to traffic and speed limits. Similarly, some toll roads might be shorter or faster but require additional payment, leading to higher costs. We consider such alternative links in our problem and develop a mixed integer linear programming model that determines which alternative link to use between two nodes, in addition to determining the optimal routes for different vehicles, depending on the model objectives and constraints. We consider the minimum cost routing as the financial objective for the company, minimizing the CO2 emissions and gas usage as the environmental objectives, and optimizing the driver working conditions/working hours, and minimizing the risks of accidents as the social objectives. With these objective functions, we aim to determine which routes, and which alternative links should be used in addition to the speed choices on each link. We discuss the results of the developed vehicle routing models and compare their results depending on the system parameters.Keywords: vehicle routing, alternative links between nodes, mixed integer linear programming, triple bottom line accounting
Procedia PDF Downloads 407719 Seaworthiness and Liability Risks Involving Technology and Cybersecurity in Transport and Logistics
Authors: Eugene Wong, Felix Chan, Linsey Chen, Joey Cheung
Abstract:
The widespread use of technologies and cyber/digital means for complex maritime operations have led to a sharp rise in global cyber-attacks. They have generated an increasing number of liability disputes, insurance claims, and legal proceedings. An array of antiquated case law, regulations, international conventions, and obsolete contractual clauses drafted in the pre-technology era have become grossly inadequate in addressing the contemporary challenges. This paper offers a critique of the ambiguity of cybersecurity liabilities under the obligation of seaworthiness entailed in the Hague-Visby Rules, which apply either by law in a large number of jurisdictions or by express incorporation into the shipping documents. This paper also evaluates the legal and technological criteria for assessing whether a vessel is properly equipped with the latest offshore technologies for navigation and cargo delivery operations. Examples include computer applications, networks and servers, enterprise systems, global positioning systems, and data centers. A critical analysis of the carriers’ obligations to exercise due diligence in preventing or mitigating cyber-attacks is also conducted in this paper. It is hoped that the present study will offer original and crucial insights to policymakers, regulators, carriers, cargo interests, and insurance underwriters closely involved in dispute prevention and resolution arising from cybersecurity liabilities.Keywords: seaworthiness, cybersecurity, liabilities, risks, maritime, transport
Procedia PDF Downloads 134718 Geopolitical Implications and the Role of LinkedIn in the Russo-Ukrainian War: A Comprehensive Analysis of Social Media in Crisis Situations
Authors: Amber Brittain-Hale
Abstract:
This research investigates the evolving role of social media in crisis situations by employing discourse analysis methodology and honing in on the Russo-Ukrainian War, particularly Ukraine's use of LinkedIn. The study posits that social media platforms, such as LinkedIn, play a crucial role in shaping communication, disseminating information, and influencing geopolitical strategies during conflicts. Focusing on Ukraine's official state account on LinkedIn and analyzing its posts and interactions, the research aims to unveil discourse dynamics in high-stakes scenarios and provide valuable insights for leaders navigating complex global challenges. A comprehensive analysis of the data will contribute to a deeper understanding of the tactics adopted by political leaders in managing communication, the bidirectional nature of discourse provided by online social networks, and the rapid advancement of technology that has led to the growing significance of social media platforms in crisis situations. Through this approach, the geopolitical factors that influenced the country's social media strategy during the Russo-Ukrainian War will be illuminated, offering a broader perspective on the role of social media in such challenging times. Ultimately, the study seeks to uncover lessons that can be drawn from Ukraine's LinkedIn approach, informing future strategies for utilizing social media during crises and advancing the understanding of how social media can be harnessed to address intricate global issues.Keywords: russo-ukrainian war, social media, crisis, discourse analysis
Procedia PDF Downloads 116717 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications
Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol
Abstract:
NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD
Procedia PDF Downloads 235716 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network
Procedia PDF Downloads 276