Search results for: pollution load index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7575

Search results for: pollution load index

5085 Disease Control of Rice Blast Caused by Pyricularia Oryzae Cavara Using Novel Chitosan-based Agronanofungicides

Authors: Abdulaziz Bashir Kutawa, Khairulmazmi Ahmad, Mohd Zobir Hussein, Asgar Ali, Mohd Aswad Abdul Wahab, Amara Rafi, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, Md. Imam Hossain, Syazwan Afif Mohd Zobir

Abstract:

Rice is a cereal crop and belongs to the family Poaceae, it was domesticated in southern China and North-Eastern India around 8000 years ago, and it’s the staple nourishment for over half of the total world’s population. Rice production worldwide is affected by different abiotic and biotic stresses. Diseases are important challenges for the production of rice, among all the diseases in rice plants, the most severe and common disease is the rice blast. Worldwide, it is one of the most damaging diseases affecting rice cultivation, the disease is caused by the non-obligate filamentous ascomycete fungus called Magnaporthe grisae or Pyricularia oryzae Cav. Nanotechnology is a new idea to improve agriculture by combating the diseases of plants, as nanoparticles were found to possess an inhibitory effect on different species of fungi. This work aimed to develop and determine the efficacy of agronanofungicides, and commercial fungicides (in-vitro and in-vivo). The agronanofungicides were developed using ionic gelation methods. In-vitro antifungal activity of the synthesized agronanofungicides was evaluated against P. oryzae using the poisoned medium technique. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the agronanofungicides. Medium with the only solvent served as a control. Mycelial growth was recorded every day, and the percentage inhibition of radial growth (PIRG) was also calculated. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. In terms of the glasshouse results, the chitosan-hexaconazole-dazomet agronanofungicide (CHDEN) treatment (2.5g/L) was found to be the most effective fungicide to reduce the intensity of the disease with a disease severity index (DSI) of 19.80%, protection index (PI) of 82.26%, lesion length of 1.63cm, disease reduction (DR) of 80.20%, and AUDPC (390.60 Unit2). The least effective fungicide was found to be ANV with a disease severity index (45.60%), protection index (45.24%), lesion length (3.83 cm), disease reduction (54.40%), and AUDPC (1205.75 Unit2). The negative control did not show any symptoms during the glasshouse assay, while the untreated control treatment exhibited severe symptoms of the disease with a DSI value of 64.38%, lesion length of 5.20 cm, and AUDPC value of 2201.85 Unit2, respectively. The treatments of agronanofungicides have enhanced the yield significantly with CHDEN having 239.00 while the healthy control had 113.67 for the number of grains per panicle. The use of CHEN and CHDEN will help immensely in reducing the severity of rice blast in the fields, and this will increase the yield and profit of the farmers that produced rice.

Keywords: chitosan, dazomet, disease severity, efficacy, and blast disease

Procedia PDF Downloads 67
5084 Bulking Rate of Cassava Genotypes and Their Root Yield Relationship at Guinea Savannah and Forest Transition Agroecological Zone of Nigeria

Authors: Olusegun D. Badewa, E. K. Tsado, A. S. Gana, K. D. Tolorunse, R. U. Okechukwu, P. Iluebbey, S. Ibrahim

Abstract:

Farmers are faced with varying production challenges ranging from unstable weather due to climate change, low yield, malnutrition, cattle invasion, and bush fires that have always affected their livelihood. Research effort must therefore be centered on improving farmers’ livelihood, nutrition, and health by providing early bulking biofortified cassava varieties that could be harvested earlier with reasonable root yield and thereby preventing long stay of the crop on their farmland. This study evaluated cassava genotypes at different harvesting months of 3, 6, 9, and 12 months after planting in order to evaluate their bulking rate at different agroecology of Mokwa and Ubiaja. Data were collected on fresh storage root yield, Harvest index, and Dry matter content. It was shown from the study that traits FSRY, HI, and DM were significant for genotype and months after planting and variable among the genotype while location had no effect on the yield traits. Early bulking genotypes were not high yielding and showed discontinuity at some point across the months. The retrogression in yield performance across months had no effect on the highest yielding. Also, for all the genotypes and across evaluated months, FSRY reduces at 9 MAP due to a reduction in dry matter content during the same month, and the best performing genotype was the genotype IBA90581, followed by IBA120036, IBA130896, and IBA980581 while the least performing was genotype IBA130818.

Keywords: early bulking, dry mater, harvest index, high yielding, root yield

Procedia PDF Downloads 206
5083 Murine Pulmonary Responses after Sub-Chronic Exposure to Environmental Ultrafine Particles

Authors: Yara Saleh, Sebastien Antherieu, Romain Dusautoir, Jules Sotty, Laurent Alleman, Ludivine Canivet, Esperanza Perdrix, Pierre Dubot, Anne Platel, Fabrice Nesslany, Guillaume Garcon, Jean-Marc Lo-Guidice

Abstract:

Air pollution is one of the leading causes of premature death worldwide. Among air pollutants, particulate matter (PM) is a major health risk factor, through the induction of cardiopulmonary diseases and lung cancers. They are composed of coarse, fine and ultrafine particles (PM10, PM2.5, and PM0.1 respectively). Ultrafine particles are emerging unregulated pollutants that might have greater toxicity than larger particles, since they are more abundant and consequently have higher surface area per unit of mass. Our project aims to develop a relevant in vivo model of sub-chronic exposure to atmospheric particles in order to elucidate the specific respiratory impact of ultrafine particles compared to fine particulate matter. Quasi-ultrafine (PM0.18) and fine (PM2.5) particles have been collected in the urban industrial zone of Dunkirk in north France during a 7-month campaign, and submitted to physico-chemical characterization. BALB/c mice were then exposed intranasally to 10µg of PM0.18 or PM2.5 3 times a week. After 1 or 3-month exposure, broncho alveolar lavages (BAL) were performed and lung tissues were harvested for histological and transcriptomic analyses. The physico-chemical study of the collected particles shows that there is no major difference in elemental and surface chemical composition between PM0.18 and PM2.5. Furthermore, the results of the cytological analyses carried out show that both types of particulate fractions can be internalized in lung cells. However, the cell count in BAL and preliminary transcriptomic data suggest that PM0.18 could be more reactive and induce a stronger lung inflammation in exposed mice than PM2.5. Complementary studies are in progress to confirm these first data and to identify the metabolic pathways more specifically associated with the toxicity of ultrafine particles.

Keywords: environmental pollution, lung affect, mice, ultrafine particles

Procedia PDF Downloads 224
5082 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 317
5081 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index

Procedia PDF Downloads 601
5080 Risk Assessment in Construction of K-Span Buildings in United Arab Emirates (UAE)

Authors: Imtiaz Ali, Imam Mansoor

Abstract:

Investigations as a part of the academic study were undertaken to identify and evaluate the significant risks associated with the construction of K-span buildings in the region of UAE. Primary field data was collected through questionnaires obtaining specific open and close-ended questions from carefully selected construction firms, civil engineers and, construction manager regarding risks associated to K-span building construction. Historical data available for other regions of the same construction technique was available which was compared for identifying various non-critical and critical risk parameters by comparative evaluation techniques to come up with important risks and potential sources for their control and minimization in K-Span buildings that is increasing in the region. The associated risks have been determined with their Relative Importance Index (RII) values of which Risk involved in Change of Design required by Owners carries the highest value (RII=0.79) whereas, Delayed Payment by Owner to Contractor is one of the least (RII=0.42) value. The overall findings suggest that most relative risks as quantified originate or associated with the contractors. It may be concluded that project proponents undertaking K-span projects in planning and budgeting the cost and delays should take into account of risks on high account if changes in design are also required any delays in the material by the supplier would then be a major risk in K-span project delay. Since projects are, less costly, so owners have limited budgets, then they hire small contractors, which are not highly competent contractors. So study suggests that owner should be aware of these types of risks associated with the construction of K-span buildings in order to make it cost effective.

Keywords: k-span buildings, k-span construction, risk management, relative improvement index (RII)

Procedia PDF Downloads 364
5079 Rural Water Supply Services in India: Developing a Composite Summary Score

Authors: Mimi Roy, Sriroop Chaudhuri

Abstract:

Sustainable water supply is among the basic needs for human development, especially in the rural areas of the developing nations where safe water supply and basic sanitation infrastructure is direly needed. In light of the above, we propose a simple methodology to develop a composite water sustainability index (WSI) to assess the collective performance of the existing rural water supply services (RWSS) in India over time. The WSI will be computed by summarizing the details of all the different varieties of water supply schemes presently available in India comprising of 40 liters per capita per day (lpcd), 55 lpcd, and piped water supply (PWS) per household. The WSI will be computed annually, between 2010 and 2016, to elucidate changes in holistic RWSS performances. Results will be integrated within a robust geospatial framework to identify the ‘hotspots’ (states/districts) which have persistent issues over adequate RWSS coverage and warrant spatially-optimized policy reforms in future to address sustainable human development. Dataset will be obtained from the National Rural Drinking Water Program (NRDWP), operating under the aegis of the Ministry of Drinking Water and Sanitation (MoDWS), at state/district/block levels to offer the authorities a cross-sectional view of RWSS at different levels of administrative hierarchy. Due to simplistic design, complemented by spatio-temporal cartograms, similar approaches can also be adopted in other parts of the world where RWSS need a thorough appraisal.

Keywords: rural water supply services, piped water supply, sustainability, composite index, spatial, drinking water

Procedia PDF Downloads 285
5078 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 682
5077 Left Ventricular Adaptations of Elite Volleyball Players Based on the Playing Position

Authors: Shihab Aldin Al Riyami, Khosrow Ebrahim, Sajad Ahmadizad

Abstract:

Hemodynamic changes and ventricular loading during exercise lead to left ventricular (LV) hypertrophy. In athletes, volume load induces enlargement of the LV internal diameter and a proportional increase of wall thickness; while, pressure load would induce thickening of the ventricular wall. These adaptations are not similar in all athletes and are related to the types of sport. Volleyball players have different types of activity and roles based on their playing. Therefore, their physiological adaptations and requirements are different. The aim of the current study was to investigate the LV adaptationsinelite volleyball players based on their playing position. Sixty male elite volleyball players (age, 30.55±3.64 years)from Brazil, Serbia, Poland, Iran, Colombia, Cameroon, Japan, Egypt, Qatar, and Tunisia were investigated (from all five volleyball play positions). All participants had the experience of at least 3 years of participation at a professional level and international tournaments. LV characteristics were evaluated and measured using the echocardiography technique. Statistical analyses revealed significant differences (P<0.05)among the five groups of players forLV internal dimension (LVID), posterior wall thickness (PWT), and intact ventricular septum (IVS). Post-hoc analysis showed that opposite position players had significant higher value of LVID, PWT, and IVS when compared with other players, including outside hitter, middle blocker, setter, and libero (p<0.05). Additionally, in libero players, PWT was significantly lower when compared with other players (p<0.05). Based on the findings of the present study, it is concluded that LV adaptations in volleyball players are related to their playing position and that the opposite players had the highest LV adaptations when compared to other positions.

Keywords: athletes, cardiac adaptations, echocardio graphy, heart, sport

Procedia PDF Downloads 242
5076 Prevalence of Rituximab Efficacy Over Immunosuppressants in Therapy of Systemic Sclerosis

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva

Abstract:

Abstract Objectives. Rituximab (RTX) shown a positive effect in the treatment of systemic sclerosis (SSc). But there is still not enough data on comparing the effectiveness of RTX with immunosuppressants (IS). The aim of our study was to compare changes of lung function and skin score in SSc between two groups of patients (pts) - on RXT therapy (prescribed after ineffectiveness of previous therapy with IS) and on therapy with IS only. Methods. This study included 103 pts received RTX as an addition to previous therapy (group 1) and 65 pts received therapy with IS and prednisolone (group 2). The mean follow-up period was 12.6±10.7months. In group 1 the mean age was 47±12.9 years, female – 88 pts (84%), the diffuse cutaneous subset of the disease had 55 pts (53%). The mean disease duration was 6.2±5.5 years. 82% pts had interstitial lung disease (ILD) and 92% were positive for ANA, 67% of them were positive for antitopoisomerase-1. All pts received prednisolone at a dose of 11.3±4.5 mg/day, IS at inclusion received 47% of them. The cumulative mean dose of RTX was 1.7±0.6 g. In group 2 the mean age was 50.8±13.8 years, female-53 pts (82%), the diffuse cutaneous subset of the disease had 44 pts (68%). The mean disease duration was 8.8±7.7 years. 81% pts had ILD and 88% were positive for ANA, 58% of them were positive for antitopoisomerase-1. All pts received prednisolone at a dose of 8.69±4.28 mg/day, IS received 57% of them. Cyclophosphamide (CP) received 45% of pts. The cumulative mean dose of CP was 10.2±15.1g. D-penicillamine received 30% of pts. Other pts was on mycophenolate mofetil or methotrexate therapy in single cases. The pts of the compared groups did not differ in the main demographic and clinical parameters. The results are presented as delta (Δ) - difference between the baseline parameter and follow up point. Results. In group 1 there was an improvement of all outcome parameters: increased of forced vital capacity, % predicted - ΔFVC=4% (p=0.0004); Diffusing capacity for carbon monoxide, % predicted remained stable (ΔDLCO=0.1%); improvement of the Rodnan skin score-ΔmRss=3.4 (p=0.001); decrease of Activity index (EScSG-AI) - ΔActivity index=1.7 (p=0.001). In group 2 the changes was insignificant: ΔFVC=-2.3%, ΔmRss=0.87, ΔActivity index=0.3. But there was a significant decrease of DLCO: ΔDLCO=-5.1% (p=0.001). Conclusion. The results of our study confirm the data on the positive effect of RTX in complex therapy in pts with SSc (decrease of skin induration, increase of FVC, stabilization of DLCO). Meantime, pts on IS and prednisolone therapy shown the worsening of lung function and insignificant changes of other clinical parameters. RTX could be considered as a more effective option in complex treatment of SSc in comparison with IS therapy

Keywords: immunosuppressants, interstitial lung disease, systemic sclerosis, rituximab

Procedia PDF Downloads 69
5075 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model

Authors: Yoftahe Nigussie

Abstract:

This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.

Keywords: room, zone, space, thermal resistance

Procedia PDF Downloads 58
5074 Competitive Condition and Market Power of Islamic Banks in Indonesia

Authors: Cupian

Abstract:

The expansion of Islamic banking industry seems to emphasize the banking competition in Indonesia where conventional and Islamic banks coexist. In addition, the 2007/2008 global financial crisis and deregulation have the effect on competitive conditions in Islamic banking market. In this context, this study aims at investigating competitive conditions and market power of Islamic banks in Indonesia using firm level data over the period 2006-2013. The study also attempts to identify the factors that represent the power of banking market to better study the degree of competition in this banking industry. Using samples of 27 Islamic commercial banks, the study uses a variety of structural and non-structural measures related to the traditional approach and the new empirical approach of the industrial organization (NEIO). The methodology is based on the set of measures of the competition and market power. The first measure is a set of concentration ratios (CR4) and Herfindahl-Hirschman index (HHI).The second measures are the Panzar and Ross H-statistic and the Lerner index based on econometric estimations with the aim of evaluating the market structure and measuring its power in terms of price setting. The results of the competition analysis suggest that the Islamic banking markets in Indonesia cannot be characterized by the bipolar cases of either perfect competition or monopoly over 2006-2013. That is, banks earned their revenues operating under conditions of monopolistic competition in that period. Overall, Islamic banks in Indonesia operate in a relatively less competitive environment or in high market power. It is also indicated that Islamic bank that hope to achieve higher returns should operate in the competitive environment.

Keywords: bank competition, islamic banks, market structure, profitability

Procedia PDF Downloads 272
5073 Skin Diseases in the Rural Areas in Nepal; Impact on Quality of Life

Authors: Dwarika P. Shrestha, Dipendra Gurung, Rushma Shrestha, Inger Rosdahl

Abstract:

Introduction: Skin diseases are one of the most common health problems in Nepal. The objectives of this study are to determine the prevalence of skin diseases and impact on quality of life in rural areas in Nepal. Materials and methods: A house-to-house survey was conducted, to obtain socio-demographic data and identify individuals with skin diseases, followed by health camps, where the villagers were examined. A pilot study was conducted in one village, which was then extended to 10 villages in 4 districts. To assess the impact on quality of life, the villagers were interviewed with Skin Disease Disability Index. This is a questionnaire developed and validated by the authors for use in Nepal. Results: In the pilot study, the overall prevalence of skin diseases was 20.1% (645/3207). In the additional 10 villages with 7348 (3651/3787 m/f) inhabitants, 1862 (721/1141 m/f, mean age 31.4 years) had one or more skin diseases. The overall prevalence of skin diseases was 25%. The most common skin disease categories were eczemas (13.7%, percentage among all inhabitants) pigment disorders (6.8%), fungal infections (4.9%), nevi (3.7%) and urticaria (2.9%). These five most common skin disease categories comprise 71% of all skin diseases seen in the study. The mean skin disease disability index score was 13.7, indicating very large impact on the quality of life. Conclusions: This population-based study shows that skin diseases are very common in the rural areas of Nepal and have significant impact on quality of life. Targeted intervention at the primary health care level should help to reduce the health burden due to skin diseases.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions

Procedia PDF Downloads 472
5072 Effect of Fines on Liquefaction Susceptibility of Sandy Soil

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure.  

Keywords: liquefaction, bentonite, slag, brittleness index

Procedia PDF Downloads 205
5071 Identification of Factors Affecting Labor Productivity in Construction Projects of Iran

Authors: Elham Dehghan, A. Shirzadi Javid, Mohsen Tadayon

Abstract:

Labor productivity is very important and gained special concerns among professionals in the construction industry, worldwide. Productivity improvements on labors achieve higher cost savings with minimal investment. Due to the fact that profit margins are small on construction projects, cost savings associated with productivity are crucial to become a successful contractor. This research program studies and highlights the factors affecting labor productivity in Iranian construction industry. A questionnaire was used to gather the relevant data from respondents who involve in managing various types of projects in wide areas in Iran. It involved ranking 57 predefined factors divided into 5 categories: Human/Labor; Financial; Management; Equipments/Materials and Environmental. Total 62 feedbacks were analyzed through the Relative Importance Index (RII) technique. The top ten factors affecting construction labor productivity in Iran are: 1) Professional capability of contractor project manager, 2) skills of contractor’s project management team, 3) professional capability of owner project manager, 4) professional capability of Consulting Project manager, 5) discipline working, 6) delay payments by the owner, 7) material shortages, 8) delays in delivery of materials, 9) turnover power of the owner, 10) poor site management. Recommendations have been made in the study to address these factors. The research has direct benefits to key stakeholders in Iranian construction industry.

Keywords: Iranian construction projects, labor, productivity, relative importance index

Procedia PDF Downloads 255
5070 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 159
5069 Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice

Authors: Kubra Dogan, Fatih Tornuk

Abstract:

Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice.

Keywords: heat treatment, phenolic content, shelf life, ultraviolet (UV-C), vegetable juice

Procedia PDF Downloads 198
5068 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials

Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer

Abstract:

A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.

Keywords: blending, buckling optimization, composite panels, wing torsion box

Procedia PDF Downloads 390
5067 Effects of Continuous Training on Anthropometric Characteristics of Adolescents in Kano, Nigeria

Authors: Emmanuel S. Adeyanju

Abstract:

This study assessed the effects of continuous training on anthropometric characteristics of adolescents in Kano, Nigeria. The anthropometric measures of per cent body fat (%BF), body mass index (BMI), conicity index (CI) and waist-to-hip ratio (WHR) were selected because of their roles in increased adiposity and favourable cardiovascular disease (CVD) factor profiles in children and adolescence. The international standards and procedures were followed in all the measurements. A total of thirty (30) subjects (M=15; F=15), selected at random, were divided into two groups; one training (M=10; F=10) and the other control (M=5; F=5). Both groups were tested before training, at six (6) and 12 weeks in all the listed variables. The training group had 12 weeks continuous training which involved running round the standard 400 m track of the college following standard procedures; while the control group did not. The findings revealed significant sex-specific reductions in %BF (F=610.482 ˂ 0.05), BMI (F=73.860 ˂ 0.05), WHR (F=49.756 ˂ 0.05); however, no significant training effect on CI (F=1.855 ˃ 0.05) and WHR (F=1.956 ˃ 0.05) was found. Greater modifications found in females than in males (except in CI and WHR) due to training were probably related to their initial level of fitness and enzymatic modifications at subcellular level during training. The result also revealed significant relationship between the modifications in %BF, BMI and WHR but failed to establish any between CI and other adiposity measures. Thus, to avert the consequences of obesity and overweight, the declining fitness level of adolescents should be checked by ensuring they engaged in regular moderate-to-vigorous physical activity (MVPA) programmes. Such a childhood habit of exercise developed early in life will have a carry-over value into adult life and improve the quality of adult population.

Keywords: adiposity, anthropometry, conicity, continuous training

Procedia PDF Downloads 439
5066 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures

Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel

Abstract:

Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.

Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT, histopathology

Procedia PDF Downloads 339
5065 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti

Abstract:

Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: compost, home compost, reducing waste, waste management

Procedia PDF Downloads 407
5064 Closed Mitral Valvotomy: A Safe and Promising Procedure

Authors: Sushil Kumar Singh, Kumar Rahul, Vivek Tewarson, Sarvesh Kumar, Shobhit Kumar

Abstract:

Objective: Rheumatic mitral stenosis continues to be a major public health problem in developing countries. When the left atrium (LA) is unable to fill the left ventricle (LV) at normal LA pressures due to impaired relaxation and impaired compliance, diastolic dysfunction occurs. The assessment of left ventricular (LV) diastolic function and filling pressures is of clinical importance to identify underlying cardiac disease, its treatment, and to assess prognosis. 2D echocardiography can detect diastolic dysfunction with excellent sensitivity and minimal risk when compared to the gold standard of invasive pressure-volume measurements. Material and Method: This was a one-year study consisting of twenty-nine patients of isolated rheumatic severe mitral stenosis. Data was analyzed preoperative and post operative (at one month follow-up). Transthoracic 2D echocardiographic parameters of the diastolic function are transmitral flow, pulmonary venous flow, mitral annular tissue doppler, and color M-mode doppler. In our study, mitral valve orifice area, ejection fraction, deceleration time, E/A-wave, E/E’-wave, myocardial performance index of left ventricle (Tei index ), and Mitral inflow propagation velocity were included for echocardiographic evaluation. The statistical analysis was performed on SPSS Version 15.0 statistical analysis software. Result: Twenty-nine patients underwent successful closed mitral commissurotomy for isolated mitral stenosis. The outcome measures were observed pre-operatively and at one-month follow-up. The majority of patients were in NYHA grade III (69.0%) in the preoperative period, which improved to NYHA grade I (48.3%) after closed mitral commissurotomy. Post-surgery mitral valve area increased from 0.77 ± 0.13 to 2.32 ± 0.26 cm, ejection fraction increased from 61.38 ± 4.61 to 64.79 ± 3.22. There was a decrease in deceleration time from 231.55 ± 49.31 to 168.28 ± 14.30 ms, E/A ratio from 1.70 ± 0.54 from 0.89 ± 0.39, E/E’ ratio from 14.59 ± 3.34 to 8.86 ± 3.03. In addition, there was improvement in TIE index from 0.50 ± 0.03 to 0.39 ± 0.06 and mitral inflow propagation velocity from 47.28 ± 3.71 to 57.86 ± 3.19 cm/sec. In peri-operative and follow-up, there was no incidence of severe mitral regurgitation (MR). There was no thromboembolic incident and no mortality.

Keywords: closed mitral valvotomy, mitral stenosis, open mitral commissurotomy, balloon mitral valvotomy

Procedia PDF Downloads 70
5063 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas

Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu

Abstract:

Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.

Keywords: climate change, water needs, balance sheet, water quality

Procedia PDF Downloads 51
5062 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect

Authors: Yi-Tung Lin

Abstract:

Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.

Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model

Procedia PDF Downloads 109
5061 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 276
5060 Relationship Between Health Coverage and Emergency Disease Burden

Authors: Karim Hajjar, Luis Lillo, Diego Martinez, Manuel Hermosilla, Nicholas Risko

Abstract:

Objectives: This study examines the relationship between universal health coverage (UCH) and the burden of emergency diseases at a global level. Methods: Data on Disability-Adjusted Life Years (DALYs) from emergency conditions were extracted from the Institute for Health Metrics and Evaluation (IHME) database for the years 2015 and 2019. Data on UHC, measured using two variables, 1) coverage of essential health services and 2) proportion of population spending more than 10% of household income on out-of-pocket health care expenditure, was extracted from the World Bank Database for years preceding our outcome of interest. Linear regression was performed, analyzing the effect of the UHC variables on the DALYs of emergency diseases, controlling for other variables. Results: A total of 133 countries were included. 44.4% of the analyzed countries had coverage of essential health services index of at least 70/100, and 35.3% had at least 10% of their population spend greater than 10% of their household income on healthcare. For every point increase in the coverage of essential health services index, there was a 13-point reduction in DALYs of emergency medical diseases (95% CI -16, -11). Conversely, for every percent decrease in the population with large household expenditure on healthcare, there was a 0.48 increase in DALYs of emergency medical diseases (95% CI -5.6, 4.7). Conclusions: After adjusting for multiple variables, an increase in coverage of essential health services was significantly associated with improvement in DALYs for emergency conditions. There was, however, no association between catastrophic health expenditure and DALYs.

Keywords: emergency medicine, universal healthcare, global health, health economics

Procedia PDF Downloads 81
5059 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 130
5058 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems

Authors: Akshay S. Dalvi, Hazim El-Mounayri

Abstract:

The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.

Keywords: district cooling plant, energy systems, framework, MBSE

Procedia PDF Downloads 120
5057 A Mixed Integer Linear Programming Model for Container Collection

Authors: J. Van Engeland, C. Lavigne, S. De Jaeger

Abstract:

In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.

Keywords: container collection, crew scheduling, mixed integer linear programming, waste management

Procedia PDF Downloads 115
5056 The Impact of Reshuffle in Indonesian Working Cabinet Volume II to Abnormal Return and Abnormal Trading Activity of Companies Listed in the Jakarta Islamic Index

Authors: Fatin Fadhilah Hasib, Dewi Nuraini, Nisful Laila, Muhammad Madyan

Abstract:

A big political event such as Cabinet reshuffle mostly can affect the stock price positively or negatively, depend on the perception of each investor and potential investor. This study aims to analyze the movement of the market and trading activities which respect to an event using event study method. This method is used to measure the movement of the stock exchange in which abnormal return can be obtained by investor related to the event. This study examines the differences of reaction on abnormal return and trading volume activity from the companies listed in the Jakarta Islamic Index (JII), before and after the announcement of the Cabinet Work Volume II on 27 July 2016. The study was conducted in observation of 21 days in total which consists of 10 days before the event and 10 days after the event. The method used in this study is event study with market adjusted model method that observes market reaction to the information of an announcement or publicity events. The Results from the study showed that there is no significant negative nor positive reaction at the abnormal return and abnormal trading before and after the announcement of the cabinet reshuffle. It is indicated by the results of statistical tests whose value not exceeds the level of significance. Stock exchange of the JII just reflects from the previous stock prices without reflecting the information regarding to the Cabinet reshuffle event. It can be concluded that the capital market is efficient with a weak form.

Keywords: abnormal return, abnormal trading volume activity, event study, political event

Procedia PDF Downloads 281