Search results for: energy managment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8387

Search results for: energy managment

5897 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam

Procedia PDF Downloads 476
5896 Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst

Authors: Hilary Rutto, Linda Sibali

Abstract:

In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated.

Keywords: brine sludge, heterogenous catalyst, biodiesel, one factor

Procedia PDF Downloads 171
5895 Adiabatic Flame Temperature: New Calculation Methode

Authors: Muthana Abdul Mjed Jamel Al-gburi

Abstract:

The present paper introduces the methane-air flame and its main chemical reaction, the mass burning rate, the burning velocity, and the most important parameter, the adiabatic and its evaluation. Those major important flame parameters will be mathematically formulated and computerized using the MATLAB program. The present program established a new technique to decide the true adiabatic flame temperature. The new technique implements the trial and error procedure to obtained the calculated total internal energy of the product species then evaluate of the reactants ones, from both, we can draw two energy lines their intersection will decide the true required temperature. The obtained results show accurate evaluation for the atmospheric Stoichiometric (Φ=1.05) methane-air flame, and the value was 2136.36 K.

Keywords: 1- methane-air flame, 2-, adiabatic flame temperature, 3-, reaction model, 4- matlab program, 5-, new technique

Procedia PDF Downloads 76
5894 Cross Section Measurement for Formation of Metastable State of ¹¹¹ᵐCd through ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd Reaction Induced by Bremsstrahlung Generated through 6 MeV Electrons

Authors: Vishal D. Bharud, B. J. Patil, S. S. Dahiwale, V. N. Bhoraskar, S. D. Dhole

Abstract:

Photon induced average reaction cross section of ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction was experimentally determined for the bremsstrahlung energy spectrum of 6 MeV by utilizing the activation and offline γ-ray spectrometric techniques. The 6 MeV electron accelerator Racetrack Microtron of Savitribai Phule Pune University, Pune was used for the experimental work. The bremsstrahlung spectrum generated by bombarding 6 MeV electrons on lead target was theoretically estimated by FLUKA code. Bremsstrahlung radiation can have energies exceeding the threshold of the particle emission, which is normally above 6 MeV. Photons of energies below the particle emission threshold undergo absorption into discrete energy levels, with possibility of exciting nuclei to excited state including metastable state. The ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction cross sections were calculated at different energies of bombarding Photon by using the TALYS 1.8 computer code with a default parameter. The focus of the present work was to study the (γ,γ’) reaction for exciting ¹¹¹Cd nuclei to metastable states which have threshold energy below 3 MeV. The flux weighted average cross section was obtained from the theoretical values of TALYS 1.8 and TENDL 2017 and is found to be in good agreement with the present experimental cross section.

Keywords: bremsstrahlung, cross section, FLUKA, TALYS-1.8

Procedia PDF Downloads 172
5893 Treatment of Leather Industry Wastewater with Advance Treatment Methods

Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal

Abstract:

Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.

Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater

Procedia PDF Downloads 159
5892 Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating

Authors: G. Rosaz, V. Semblanet, S. Calatroni, A. Sublet, M. Taborelli

Abstract:

We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnetic profiles. These show a good agreement between the expected and actual values. The qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016 A.cm-2 to 0.074 A.cm-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10-3 mbar and a plasma source power of 300 W.

Keywords: ion energy distribution function, magnetron sputtering, niobium, unbalanced, SRF cavities, thin film

Procedia PDF Downloads 256
5891 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides

Authors: Niharika Keot, Manabendra Sarma

Abstract:

A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.

Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics

Procedia PDF Downloads 83
5890 Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach

Authors: Selfa Johnson Zwalnan, Nanchen Nimyel Caleb, Gideon Duvuna Ayuba

Abstract:

Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.

Keywords: building simulation, solar gain, comfort temperature, temperature, carbon foot print

Procedia PDF Downloads 95
5889 Research on ARQ Transmission Technique in Mars Detection Telecommunications System

Authors: Zhongfei Cai, Hui He, Changsheng Li

Abstract:

This paper studied in the automatic repeat request (ARQ) transmission technique in Mars detection telecommunications system. An ARQ method applied to proximity-1 space link protocol was proposed by this paper. In order to ensure the efficiency of data reliable transmission, this ARQ method combined these different ARQ maneuvers characteristics. Considering the Mars detection communication environments, this paper analyzed the characteristics of the saturation throughput rate, packet dropping probability, average delay and energy efficiency with different ARQ algorithms. Combined thus results with the theories of ARQ transmission technique, an ARQ transmission project in Mars detection telecommunications system was established. The simulation results showed that this algorithm had excellent saturation throughput rate and energy efficiency with low complexity.

Keywords: ARQ, mars, CCSDS, proximity-1, deepspace

Procedia PDF Downloads 340
5888 Thermally Stimulated Depolarization Current (TSDC) and Transient Current Study in Polysulfone (PSF) and Polyvinylidenefluoride (PVDF) Blends

Authors: S. Patel, T. Mitra, R. Dubey, J. Keller

Abstract:

In the present investigations, an attempt has been made to study the charge storage mechanism and mechanism for the flow of transient charging and discharging current in an amorphous polymer (Polysulfone) (PSF) and a semi-crystalline polar Polyvinylidene fluoride (PVDF) blends in ratio PSF: PVDF: 80:20;85:15;90:10 and 95:05 at various poling temperatures (i.e. 60, 75, 90 and 1150C) and with field strength (100, 150, 200 and 250kVcm⁻¹). Thermally stimulated depolarizing current TSDC thermograms for (Polysulfone (PSF) and Polyvinylidene fluoride (PVDF) Blends sample have been obtained under different polarizing conditions. Peaks are found at high-temperature side. The variation of structure on blending and poling condition affects the magnitude of TSDC. The activation energy values have been calculated using the initial rise method of Garlick and Gibson. The transient current with the similar polarizing condition has been investigated over a period of 3X10³ sec. The observed characteristics obey Curie-Von Schweidler law in the studied temperature range. The charging current versus polarizing temperature curves at a constant time, i.e., isochronal current characteristics were studied and the activation energies were calculated. The activation energy in transient thermograms calculated by different methods is in good agreement with the values obtained from TSDC studies.

Keywords: activation energy, polysulfone (PSF), polyvinylidenefluoride (PVDF), thermally stimulated depolarizing current (TSDC)

Procedia PDF Downloads 170
5887 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
5886 Effect of Cumulative Dissipated Energy on Short-Term and Long-Term Outcomes after Uncomplicated Cataract Surgery

Authors: Palaniraj Rama Raj, Himeesh Kumar, Paul Adler

Abstract:

Purpose: To investigate the effect of ultrasound energy, expressed as cumulative dissipated energy (CDE), on short and long-term outcomes after uncomplicated cataract surgery by phacoemulsification. Methods: In this single-surgeon, two-center retrospective study, non-glaucomatous participants who underwent uncomplicated cataract surgery were investigated. Best-corrected visual acuity (BCVA) and intraocular pressure (IOP) were measured at 3 separate time points: pre-operative, Day 1 and ≥1 month. Anterior chamber (AC) inflammation and corneal odema (CO) were assessed at 2 separate time points: Pre-operative and Day 1. Short-term changes (Day 1) in BCVA, IOP, AC and CO and long-term changes (≥1 month) in BCVA and IOP were evaluated as a function of CDE using a multivariate multiple linear regression model, adjusting for age, gender, cataract type and grade, preoperative IOP, preoperative BCVA and duration of long-term follow-up. Results: 110 eyes from 97 non-glaucomatous participants were analysed. 60 (54.55%) were female and 50 (45.45%) were male. The mean (±SD) age was 73.40 (±10.96) years. Higher CDE counts were strongly associated with higher grades of sclerotic nuclear cataracts (p <0.001) and posterior subcapsular cataracts (p <0.036). There was no significant association between CDE counts and cortical cataracts. CDE counts also had a positive correlation with Day 1 CO (p <0.001). There was no correlation between CDE counts and Day 1 AC inflammation. Short-term and long-term changes in post-operative IOP did not demonstrate significant associations with CDE counts (all p >0.05). Though there was no significant correlation between CDE counts and short-term changes in BCVA, higher CDE counts were strongly associated with greater improvements in long-term BCVA (p = 0.011). Conclusion: Though higher CDE counts were strongly associated with higher grades of Day 1 postoperative CO, there appeared to be no detriment to long-term BCVA. Correspondingly, the strong positive correlation between CDE counts and long-term BCVA was likely reflective of the greater severity of underlying cataract type and grade. CDE counts were not associated with short-term or long-term postoperative changes in IOP.

Keywords: cataract surgery, phacoemulsification, cumulative dissipated energy, CDE, surgical outcomes

Procedia PDF Downloads 180
5885 Effect of Dust on Performances of Single Crystal Photovoltaic Solar Module

Authors: A. Benatiallah, D. Benatiallah, A. Harrouz, F. Abaidi, S. Mansouri

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system fluctuates and depend on meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work, we have studied the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: solar modulen pv, dust effect, experimental, performances

Procedia PDF Downloads 497
5884 Modelling and Optimization of Geothermal Energy in the Gulf of Suez

Authors: Amira Abdelhafez, Rufus Brunt

Abstract:

Geothermal energy in Egypt represents a significant untapped renewable resource that can reduce reliance on conventional power generation. Exploiting these geothermal resources depends on depth, temperature range, and geological characteristics. The intracontinental rift setting of the Gulf of Suez (GoS)-Red Sea rift is a favourable tectonic setting for convection-dominated geothermal plays. The geothermal gradient across the GoS ranges from 24.9 to 86.66 °C/km, with a heat flow of 31-127.2 mW/m². Surface expressions of convective heat loss emerge along the gulf flanks as hot springs (e.g., Hammam Faraun) accompanying deeper geothermal resources. These thermal anomalies are driven mainly by the local tectonic configuration. Characterizing the structural framework of major faults and their control on reservoir properties and subsurface hydrothermal fluid circulation is vital for geothermal applications in the gulf. The geothermal play systems of the GoS depend on structural and lithological properties that contribute to heat storage and vertical transport. Potential geothermal reservoirs include the Nubia sandstones, which, due to their thickness, continuity, and contact with hot basement rocks at a mean depth of 3 km, create an extensive reservoir for geothermal fluids. To develop these geothermal resources for energy production, defining the permeability anisotropy of the reservoir due to faults and facies variation is a crucial step in our study, particularly the evaluation of influence on thermal breakthrough and production rates.

Keywords: geothermal, October field, site specific study, reservoir modelling

Procedia PDF Downloads 11
5883 Integration of Two Thermodynamic Cycles by Absorption for Simultaneous Production of Fresh Water and Cooling

Authors: Javier Delgado-Gonzaga, Wilfrido Rivera, David Juárez-Romero

Abstract:

Cooling and water purification are processes that have contributed to the economic and social development of the modern world. However, these processes require a significant amount of energy globally. Nowadays, absorption heat pumps have been studied with great interest since they are capable of producing cooling and/or purifying water from low-temperature energy sources such as industrial waste heat or renewable energy. In addition, absorption heat pumps require negligible amounts of electricity for their operation and generally use working fluids that do not represent a risk to the environment. The objective of this work is to evaluate a system that integrates an absorption heat transformer and an absorption cooling system to produce fresh water and cooling from a low-temperature heat source. Both cycles operate with the working pair LiBr-H2O. The integration is possible through the interaction of the LiBr-H2O solution streams between both cycles and also by recycling heat from the absorption heat transformer to the absorption cooling system. Mathematical models were developed to compare the performance of four different configurations. The results showed that the configuration in which the hottest streams of LiBr-H2O solution preheated the coldest streams in the economizers of both cycles was one that achieved the best performance. The interaction of the solution currents and the heat recycling analyzed in this work serves as a record of the possibilities of integration between absorption cycles for cogeneration.

Keywords: absorption heat transformer, absorption cooling system, water desalination, integrated system

Procedia PDF Downloads 78
5882 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles

Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto

Abstract:

Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.

Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design

Procedia PDF Downloads 259
5881 Experimental Modelling Gear Contact with TE77 Energy Pulse Setup

Authors: Zainab Mohammed Shukur, Najlaa Ali Alboshmina, Ali Safa Alsaegh

Abstract:

The project was investigated tribological behavior of polyether ether ketone (PEEK1000) against PEEK1000 rolling sliding (non-conformal) configuration with slip ratio 83.3%, were tested applications using a TE77 wear mechanisms and friction coefficient test rig. Under marginal lubrication conditions and the absence of film thick conditions, load 100 N was used to simulate the torque in gears 7 N.m. The friction coefficient and wear mechanisms of PEEK were studied under reciprocating roll/slide conditions with water, ethylene glycol, silicone, and base oil. Tribological tests were conducted on a TE77 high-frequency tribometer, with a disc-on-plate slide/roll (the energy pulse criterion) configuration. An Alicona G5 optical 3D micro-coordinate measurement microscope was used to investigate the surface topography and wear mechanisms. The surface roughness had been a significant effect on the friction coefficient for the PEEK/PEEK the rolling sliding contact test ethylene glycol and on the wear mechanisms. When silicone, ethylene glycol, and oil were used as a lubricant, the steady state of friction coefficient was reached faster than the other lubricant. Results describe the effect of the film thick with slip ratio of 83.3% on the tribological performance.

Keywords: polymer, rolling- sliding, energy pulse, gear contact

Procedia PDF Downloads 142
5880 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage

Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee

Abstract:

Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy

Procedia PDF Downloads 50
5879 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment

Authors: Yousaf Ayub

Abstract:

A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.

Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis

Procedia PDF Downloads 65
5878 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles

Authors: N. Soli, B. Chaouachi, M. Bourouis

Abstract:

We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.

Keywords: absorption, DAR cycle, diffusion, propyléne

Procedia PDF Downloads 274
5877 A Project Screening System for Energy Enterprise Based on Dempster-Shafer Theory

Authors: Woosik Jang, Seung Heon Han, Seung Won Baek

Abstract:

Natural gas (NG) is an energy resource in a few countries, and most NG producers do business in politically unstable countries. In addition, as 90% of the LNG market is controlled by a small number of international oil companies (IOCs) and national oil companies (NOCs), entry of latecomers into the market is extremely limited. To meet these challenges, project viability needs to be assessed based on limited information from a project screening perspective. However, the early stages of the project have the following difficulties: (1) What are the factors to consider? (2) How many professionals do you need to decide? (3) How to make the best decision with limited information? To address this problem, this study proposes a model for evaluating LNG project viability based on the Dempster-Shafer theory (DST). A total of 11 indicators for analyzing the gas field, reflecting the characteristics of the LNG industry, and 23 indicators for analyzing the market environment, were identified. The proposed model also evaluates the LNG project based on the survey and provides uncertainty of the results based on DST as well as quantified results. Thus, the proposed model is expected to be able to support the decision-making process of the gas field project using quantitative results as a systematic framework, and it was developed as a stand-alone system to improve its usefulness in practice. Consequently, the amount of information and the mathematical approach are expected to improve the quality and opportunity of decision making for LNG projects for enterprises.

Keywords: project screen, energy enterprise, decision support system, Dempster-Shafer theory

Procedia PDF Downloads 341
5876 Enhancement of Building Sustainability by Using Environment-Friendly Material

Authors: Rina Yadav, Meng-Ting Tsai

Abstract:

In the present scenario, sustainable buildings are in high demand. The essential decision for building sustainability is made during the design and preconstruction stages. Main objective of this study is reduction of unfavorable environmental impacts, which is a major cause of global warming. Based on this problem, to diminish the environmental hazards, present research study is applied to provide a guideline to designer that will be useful for material selection stage of designing. This can be achieved by using local available materials such as wood, mud, bamboos instead of cement, steel, concrete by reducing carbon dioxide emission. Energy simulation will be analyzed by software to get the comparable result. It will be encouraging and motivational for designer while using ecofriendly material to achieve points in Leadership in energy and environmental design (LEED) in green rating system.

Keywords: sustainability design, lead rating, LEED, building performance analyses

Procedia PDF Downloads 490
5875 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 116
5874 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 238
5873 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy

Authors: Dhara Adhnandya Kumara, Novrizal Novrizal

Abstract:

Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.

Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock

Procedia PDF Downloads 217
5872 Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys

Authors: Diego S. Caetano, Doreen E. Kalz, Louise L. B. Lomardo, Luiz P. Rosa

Abstract:

The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling.

Keywords: thermal comfort, energy consumption, energy standards, comfort models

Procedia PDF Downloads 323
5871 Comparative Life Cycle Assessment of an Extensive Green Roof with a Traditional Gravel-Asphalted Roof: An Application for the Lebanese Context

Authors: Makram El Bachawati, Rima Manneh, Thomas Dandres, Carla Nassab, Henri El Zakhem, Rafik Belarbi

Abstract:

A vegetative roof, also called a garden roof, is a "roofing system that endorses the growth of plants on a rooftop". Garden roofs serve several purposes for a building, such as embellishing the roofing system, enhancing the water management, and reducing the energy consumption and heat island effects. Lebanon is a Middle East country that lacks the use of a sustainable energy system. It imports 98% of its non-renewable energy from neighboring countries and suffers flooding during heavy rains. The objective of this paper is to determine if the implementation of vegetative roofs is effectively better than the traditional roofs for the Lebanese context. A Life Cycle Assessment (LCA) is performed in order to compare an existing extensive green roof to a traditional gravel-asphalted roof. The life cycle inventory (LCI) was established and modeled using the SimaPro 8.0 software, while the environmental impacts were classified using the IMPACT 2002+ methodology. Results indicated that, for the existing extensive green roof, the waterproofing membrane and the growing medium were the highest contributors to the potential environmental impacts. When comparing the vegetative to the traditional roof, results showed that, for all impact categories, the extensive green roof had the less environmental impacts.

Keywords: life cycle assessment, green roofs, vegatative roof, environmental impact

Procedia PDF Downloads 463
5870 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: battery bank, photo-voltaic, pump-storage, wind energy

Procedia PDF Downloads 595
5869 Smart Energy Consumers: An Empirical Investigation on the Intention to Adopt Innovative Consumption Behaviour

Authors: Cecilia Perri, Vincenzo Corvello

Abstract:

The aim of the present study is to investigate consumers' determinants of intention toward the adoption of Smart Grid solutions and technologies. Ajzen's Theory of Planned Behaviour (TPB) model is applied and tested to explain the formation of such adoption intention. An exogenous variable, taking into account the resistance to change of individuals, was added to the basic model. The elicitation study allowed obtaining salient modal beliefs, which were used, with the support of literature, to design the questionnaire. After the screening phase, data collected from the main survey were analysed for evaluating measurement model's reliability and validity. Consistent with the theory, the results of structural equation analysis revealed that attitude, subjective norm, and perceived behavioural control positively, which affected the adoption intention. Specifically, the variable with the highest estimate loading factor was found to be the perceived behavioural control, and, the most important belief related to each construct was determined (e.g., energy saving was observed to be the most significant belief linked with attitude). Further investigation indicated that the added exogenous variable has a negative influence on intention; this finding confirmed partially the hypothesis, since this influence was indirect: such relationship was mediated by attitude. Implications and suggestions for future research are discussed.

Keywords: adoption of innovation, consumers behaviour, energy management, smart grid, theory of planned behaviour

Procedia PDF Downloads 408
5868 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 229