Search results for: virtual machine migration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4933

Search results for: virtual machine migration

2473 PhotoRoom App

Authors: Nouf Nasser, Nada Alotaibi, Jazzal Kandiel

Abstract:

This research study is about the use of artificial intelligence in PhotoRoom. When an individual selects a photo, PhotoRoom automagically removes or separates the background from other parts of the photo through the use of artificial intelligence. This will allow an individual to select their desired background and edit it as they wish. The methodology used was an observation, where various reviews and parts of the app were observed. The review section's findings showed that many people actually like the app, and some even rated it five stars. The conclusion was that PhotoRoom is one of the best photo editing apps due to its speed and accuracy in removing backgrounds.

Keywords: removing background, app, artificial intelligence, machine learning

Procedia PDF Downloads 199
2472 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 283
2471 Automatic Approach for Estimating the Protection Elements of Electric Power Plants

Authors: Mahmoud Mohammad Salem Al-Suod, Ushkarenko O. Alexander, Dorogan I. Olga

Abstract:

New algorithms using microprocessor systems have been proposed for protection the diesel-generator unit in autonomous power systems. The software structure is designed to enhance the control automata of the system, in which every protection module of diesel-generator encapsulates the finite state machine.

Keywords: diesel-generator unit, protection, state diagram, control system, algorithm, software components

Procedia PDF Downloads 420
2470 Role of Long Noncoding RNA HULC on Colorectal Carcinoma Progression through Epigenetically Repressing NKD2 Expression

Authors: Shu-Jun Li, Cheng-Cao Sun, De-Jia Li

Abstract:

Recently, long noncoding RNAs (lncRNAs) have been emerged as crucial regulators of human diseases and prognostic markers in numerous of cancers, including colorectal carcinoma (CRC). Here, we identified an oncogenetic lncRNA HULC, which may promote colorectal tumorigenesis. HULC has been found to be up-regulated and acts as oncogene in gastric cancer and hepatocellular carcinoma, but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. Here, we reported that HULC expression is also over-expressed in CRC, and its increased level is associated with poor prognosis and shorter survival. Knockdown of HULC impaired CRC cells proliferation, migration and invasion, facilitated cell apoptosis in vitro, and inhibited tumorigenicity of CRC cells in vivo. Mechanistically, RNA immunoprecipitation (RIP) and RNA pull-down experiment demonstrated that HULC could simultaneously interact with EZH2 to repress underlying targets NKD2 transcription. In addition, rescue experiments determined that HULC oncogenic function is partly dependent on repressing NKD2. Taken together, our findings expound how HULC over-expression endows an oncogenic function in CRC.

Keywords: long noncoding RNA, HULC, NKD2, colorectal carcinoma, proliferation, apoptosis

Procedia PDF Downloads 225
2469 Evaluation of Urban Transportation Systems: Comparing and Selecting the Most Efficient Transportation Solutions

Authors: E. Azizi Asiyabar

Abstract:

The phenomenon of migration to larger cities has brought about a range of consequences, including increased travel demand and the necessity for smooth traffic flow to expedite transportation. Regrettably, insufficient urban transportation infrastructure has given rise to various issues, including air pollution, heightened fuel consumption, and wasted time. To address traffic-related problems and the economic, social, and environmental challenges that ensue, a well-equipped, efficient, fast, cost-effective, and high-capacity transportation system is imperative, with a focus on reliability. This study undertakes a comprehensive examination of rail transportation systems and subsequently compares their advantages and limitations. The findings of this investigation reveal that hybrid monorails exhibit lower maintenance requirements and associated costs when compared to other types of monorails, standard trains, and urban light rail systems. Given their favorable attributes in terms of pollution reduction, increased transportation speed, and enhanced quality of service, hybrid monorails emerge as a highly recommended and suitable option.

Keywords: comparing, most efficient, selecting, urban transportation

Procedia PDF Downloads 81
2468 The Effects of Circadian Rhythms Change in High Latitudes

Authors: Ekaterina Zvorykina

Abstract:

Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.

Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors

Procedia PDF Downloads 156
2467 Selfie: Redefining Culture of Narcissism

Authors: Junali Deka

Abstract:

“Pictures speak more than a thousand words”. It is the power of image which can have multiple meanings the way it is read by the viewers. This research article is an outcome of the extensive study of the phenomenon of‘selfie culture’ and dire need of self-constructed virtual identity among youths. In the recent times, there has been a revolutionary change in the concept of photography in terms of both techniques and applications. The popularity of ‘self-portraits’ mainly depend on the temporal space and time created on social networking sites like Facebook, Instagram. With reference to Stuart’s Hall encoding and decoding process, the article studies the behavior of the users who post photographs online. The photographic messages (Roland Barthes) are interpreted differently by different viewers. The notion of ‘self’, ‘self-love and practice of looking (Marita Sturken) and ways of seeing (John Berger) got new definition and dimensional together. After Oscars Night, show host Ellen DeGeneres’s selfie created the most buzz and hype in the social media. The term was judged the word of 2013, and has earned its place in the dictionary. “In November 2013, the word "selfie" was announced as being the "word of the year" by the Oxford English Dictionary. By the end of 2012, Time magazine considered selfie one of the "top 10 buzzwords" of that year; although selfies had existed long before, it was in 2012 that the term "really hit the big time an Australian origin. The present study was carried to understand the concept of ‘selfie-bug’ and the phenomenon it has created among youth (especially students) at large in developing a pseudo-image of its own. The topic was relevant and gave a platform to discuss about the cultural, psychological and sociological implications of selfie in the age of digital technology. At the first level, content analysis of the primary and secondary sources including newspapers articles and online resources was carried out followed by a small online survey conducted with the help of questionnaire to find out the student’s view on selfie and its social and psychological effects. The newspapers reports and online resources confirmed that selfie is a new trend in the digital media and it has redefined the notion of beauty and self-love. The Facebook and Instagram are the major platforms used to express one-self and creation of virtual identity. The findings clearly reflected the active participation of female students in comparison to male students. The study of the photographs of few selected respondents revealed the difference of attitude and image building among male and female users. The study underlines some basic questions about the desire of reconstruction of identity among young generation, such as - are they becoming culturally narcissist; responsible factors for cultural, social and moral changes in the society, psychological and technological effects caused by Smartphone as well, culminating into a big question mark whether the selfie is a social signifier of identity construction.

Keywords: Culture, Narcissist, Photographs, Selfie

Procedia PDF Downloads 407
2466 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel

Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim

Abstract:

Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.

Keywords: candida cells, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 198
2465 A Study of Human Communication in an Internet Community

Authors: Andrew Laghos

Abstract:

The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.

Keywords: human communication, internet communities, online user behavior, psychology

Procedia PDF Downloads 497
2464 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter, THD, induction machine

Procedia PDF Downloads 249
2463 Factors Affecting Visual Environment in Mine Lighting

Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna

Abstract:

The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.

Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility

Procedia PDF Downloads 358
2462 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders

Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga

Abstract:

In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.

Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory

Procedia PDF Downloads 607
2461 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing

Procedia PDF Downloads 130
2460 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 117
2459 Case Report: Treatment Resistant Schizophrenia in an Immigrant Adolescent

Authors: Omaymah Al-Otoom, Rajesh Mehta

Abstract:

Introduction: Migration is an established risk factor in the development of schizophrenia and other forms of psychosis. The exposure to different social adversities, including social isolation, discrimination, and economic stress, is thought to contribute to elevated rates of psychosis in immigrants and their children. We present a case of resistant schizophrenia in an immigrant adolescent. Case: The patient is a 15-year-old male immigrant. In October 2021, the patient was admitted for irritability, suicidal ideations, and hallucinations. He was treated with Fluoxetine 10 mg daily for irritability. In November 2021, he presented with similar manifestations. Fluoxetine was discontinued, and Risperidone 1 mg at bedtime was started for psychotic symptoms. In March 2022, he presented with commanding auditory hallucinations (voices telling him that people were going to kill his father). Risperidone was gradually increased to 2.5 mg twice daily for hallucinations. The outpatient provider discontinued Risperidone and started Olanzapine 7.5 mg and Lurasidone 40 mg daily. In August 2022, he presented with worsening paranoia due to medication non-adherence. The patient had limited improvement on medications. In October 2022, the patient presented to the ED for visual hallucinations and aggression towards the family. His medications were Olanzapine 10 mg daily, Lurasidone 60 mg daily, and Haloperidol 2.5 mg twice daily. In the ED, he received multiple as-needed medications and was placed in seclusion for his aggressive behavior. The patient showed a positive response to a higher dose of Olanzapine and decreased dose of Lurasidone. The patient was discharged home in stable condition. Two days after discharge, he was brought for bizarre behavior, visual hallucinations, and homicidal ideations at school. Due to concerns for potential antipsychotic side effects and poor response, Lurasidone and Olanzapine were discontinued, and he was discharged home on Haloperidol 5 mg in the morning and 15 mg in the evening. Clozapine treatment was recommended on an outpatient basis. He has no family history of psychotic disorders. He has no history of substance use. A medical workup was done, the electroencephalogram was normal, and the urine toxicology was negative. Discussion: Our patient was on three antipsychotics at some point with no improvement in his psychotic symptoms, which qualifies as treatment-resistant schizophrenia (TRP). It is well recognized that migrants are at higher risk of different psychiatric disorders, including posttraumatic stress disorder, affective disorders, schizophrenia, and psychosis. This is thought to be related to higher exposure to traumatic life events compared to the general population. In addition, migrants are more likely to experience poverty, separation from family members, and discrimination which could contribute to mental health issues. In one study, they found that people who migrated before the age of 18 had twice the risk of psychotic disorders compared to the native-born population. It is unclear whether migration increases the risk of treatment resistance. In a Canadian study, neither ethnicity nor migrant status was associated with treatment resistance; however, this study was limited by its small sample size. There is a need to implement psychiatric prevention strategies and outreach programs through research to mitigate the risk of mental health disorders among immigrants.

Keywords: psychosis, immigrant, adolescent, treatment resistant schizophrenia

Procedia PDF Downloads 116
2458 The Efficacy of Open Educational Resources in Students’ Performance and Engagement

Authors: Huda Al-Shuaily, E. M. Lacap

Abstract:

Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.

Keywords: EDM, learning analytics, moodle, OER, student-engagement

Procedia PDF Downloads 339
2457 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
2456 The Effects of Terrein: A Secondary Metabolite from Aspergillus terreus as Anticancer and Antimetastatic Agent on Lung Cancer Cells

Authors: Paiwan Buachan, Maneekarn Namsa-Aid, Suchada Jongrungruangchok, Foengchat Jarintanan, Wanlaya Uthaisang-Tanechpongtamb

Abstract:

Lung cancer or pulmonary carcinoma is the uncontrolled growth of abnormal cells in one or both of the lungs. These abnormal cells can spread to other organs of the body through lymphatic system or bloodstream which is called metastatic stage that leading cause of cancer death. Terrein (C₈H₁₀O₃; MW= 154.06 kDa) is a secondary bioactive fungal metabolite, which was isolated from the Aspergillus terreus. In this study, we investigated the effects of terrein on the inhibition of human lung cancer cell proliferation and metastasis. The A549 human non-small cell lung cancer cell line was used as a model. Terrein significantly inhibited lung cancer cell proliferation measuring by a colorimetric MTT assay (IC₅₀ 0.32 mM) and significantly inhibited metastatic processes including migration, invasion, and adhesion that determined by wound healing assay, transwell assay, and adhesion assay, respectively. These findings indicate that terrein could be a potential therapeutic agent for lung cancer.

Keywords: terrein, lung cancer, anticancer, antimetastatic

Procedia PDF Downloads 171
2455 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 271
2454 Explication of the Relationship between Historical Trauma, Culture Loss, and Native American Youth Suicide: A Review of Related Literature

Authors: Julie A. LaRose

Abstract:

Native American youth, ages 10-24, have the highest rate of suicide in the United States. The hopelessness experienced by the native American youth is linked to psychosocial reasons more than biological or intrapsychic reasons. Two significant social determinants of health that diminish their hope include historical trauma and cultural loss. Intergenerational grief is caused by historical trauma from hundreds of years of colonization, broken treaties, and forced migration, leading to land, resources, and sovereignty loss. Forced acculturation through boarding schools that native children were required to attend led to the loss of traditions and culture. The result is hopelessness. This paper reviewed peer-reviewed research literature, government reports, non-government organizations reports, and video and written publications by Native Americans. Building hope through healing historical trauma and embracing cultural traditions may reduce suicide rates among Native American youth.

Keywords: culture loss, historical trauma, Native American, suicide, suicide rates

Procedia PDF Downloads 121
2453 The Local Centers' Development of Berlin: Analyzing Different Cultural Influences with Impact on Urban Changes

Authors: Monika Moggert

Abstract:

The aim of the research evaluates the local centers' development of Berlin, the capital of Germany. There are included studies of their potential, considers the possibility of applying different cultural influences and the issue of the current demographic transformation of Europe. The solution utilizes the analysis of historical, cultural, political and sociological changes after 2nd World War; the exploration of historical as well as strategic maps and personal evaluation of the current condition of selected boroughs – Berlin Neuköln, Kreuzberg and Wedding, where more than 30% of the inhabitants have a migration background. The research provides an example of the likely development of centers in urban agglomerations. It examines the issue of local centers with an inhumane scale in contrast to small-scale centering sites, mostly located in areas largely with immigrant communities. The research results enable a better understanding of the influence of different cultures and lifestyles on the appearance of the city and its local centers. We can use it as an inspiration for the new design of the Berlin centers. The results will be used for further research on urban space development in the cultural environment of Europe and the Middle East as well.

Keywords: Berlin, cultural environment, life in the city, public and urban space, the urban city centers development, town and society

Procedia PDF Downloads 196
2452 Composite Electrospun Aligned PLGA/Curcumin/Heparin Nanofibrous Membranes for Wound Dressing Application

Authors: Jyh-Ping Chen, Yu-Tin Lai

Abstract:

Wound healing is a complicated process involving overlapping hemostasis, inflammation, proliferation, and maturation phases. Ideal wound dressings can replace native skin functions in full thickness skin wounds through faster healing rate and also by reducing scar formation. Poly(lactic-co-glycolic acid) (PLGA) is an U.S. FDA approved biodegradable polymer to be used as ideal wound dressing material. Several in vitro and in vivo studies have demonstrated the effectiveness of curcumin in decreasing the release of inflammatory cytokines, inhibiting enzymes associated with inflammations, and scavenging free radicals that are the major cause of inflammation during wound healing. Heparin has binding affinities to various growth factors. With the unique and beneficial features offered by those molecules toward the complex process of wound healing, we postulate a composite wound dressing constructed from PLGA, curcumin and heparin would be a good candidate to accelerate scarless wound healing. In this work, we use electrospinning to prepare curcumin-loaded aligned PLGA nanofibrous membranes (PC NFMs). PC NFMs were further subject to oxygen plasma modification and surfaced-grafted with heparin through carbodiimide-mediated covalent bond formation to prepare curcumin-loaded PLGA-g-heparin (PCH) NFMs. The nanofibrous membranes could act as three-dimensional scaffolds to attract fibroblast migration, reduce inflammation, and increase wound-healing related growth factors concentrations at wound sites. From scanning electron microscopy analysis, the nanofibers in each NFM are with diameters ranging from 456 to 479 nm and with alignment angles within  0.5°. The NFMs show high tensile strength and good water absorptivity and provide suitable pore size for nutrients/wastes transport. Exposure of human dermal fibroblasts to the extraction medium of PC or PCH NFM showed significant protective effects against hydrogen peroxide than PLGA NFM. In vitro wound healing assays also showed that the extraction medium of PCH NFM showed significantly better migration ability toward fibroblasts than PC NFM, which is further better than PLGA NFM. The in vivo healing efficiency of the NFMs was further evaluated by a full thickness excisional wound healing diabetic rat model. After 14 days, PCH NFMs exhibits 86% wound closure rate, which is significantly different from other groups (79% for PC and 73% for PLGA NFM). Real-time PCR analysis indicated PC and PCH NFMs down regulated anti-oxidative enzymes like glutathione peroxidase (GPx) and superoxide dismutase (SOD), which are well-known transcription factors involved in cellular inflammatory responses to stimuli. From histology, the wound area treated with PCH NFMs showed more vascular lumen formation from immunohistochemistry of α-smooth muscle actin. The wound site also had more collagen type III (65.8%) expression and less collagen type I (3.5%) expression, indicating scar-less wound healing. From Western blot analysis, the PCH NFM showed good affinity toward growth factors from increased concentration of transforming growth factor-β (TGF-β) and fibroblast growth factor-2 (FGF-2) at the wound site to accelerate wound healing. From the results, we suggest PCH NFM as a promising candidate for wound dressing applications.

Keywords: Curcumin, heparin, nanofibrous membrane, poly(lactic-co-glycolic acid) (PLGA), wound dressing

Procedia PDF Downloads 155
2451 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 169
2450 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 87
2449 A Two Level Load Balancing Approach for Cloud Environment

Authors: Anurag Jain, Rajneesh Kumar

Abstract:

Cloud computing is the outcome of rapid growth of internet. Due to elastic nature of cloud computing and unpredictable behavior of user, load balancing is the major issue in cloud computing paradigm. An efficient load balancing technique can improve the performance in terms of efficient resource utilization and higher customer satisfaction. Load balancing can be implemented through task scheduling, resource allocation and task migration. Various parameters to analyze the performance of load balancing approach are response time, cost, data processing time and throughput. This paper demonstrates a two level load balancer approach by combining join idle queue and join shortest queue approach. Authors have used cloud analyst simulator to test proposed two level load balancer approach. The results are analyzed and compared with the existing algorithms and as observed, proposed work is one step ahead of existing techniques.

Keywords: cloud analyst, cloud computing, join idle queue, join shortest queue, load balancing, task scheduling

Procedia PDF Downloads 431
2448 Study on the Neurotransmitters and Digestion of Amino Acids Affecting Psychological Chemical Imbalance

Authors: Yoonah Lee, Richard Kyung

Abstract:

With technological advances in the computational biomedical field, the ability to measure neurotransmitters’ chemical imbalances that affect depression and anxiety has been established. By comparing the thermodynamics stability of amino acid supplements, such as glutamine, tyrosine, phe-nylalanine, and methionine, this research analyzes mood-regulating neurotransmitters, amino acid supplements, and antipsychotic substances (ie. Reserpine molecule and CRF complexes) in relation to depression and anxiety and suggests alternative complexes that are low in energy to act as more efficient treatments for mood disorders. To determine a molecule’s thermodynamic stability, this research examines the molecular energy using Avogadro, a software for building virtual molecules and calculating optimized geometry using GAFF (General Amber Force Field) and UFF (Universal Force Field). The molecules, built using Avogadro, is analyzed using their theoretical values and atomic properties.

Keywords: amino acids, anxiety, depression, neurotransmitters

Procedia PDF Downloads 162
2447 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 83
2446 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 51
2445 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam

Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar

Abstract:

Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.

Keywords: FPZ, fracture, FRP, shear

Procedia PDF Downloads 534
2444 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 84