Search results for: precytokinesis cell cycle arrest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5574

Search results for: precytokinesis cell cycle arrest

3114 A Strategy to Oil Production Placement Zones Based on Maximum Closeness

Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes

Abstract:

Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.

Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone

Procedia PDF Downloads 321
3113 Effect of Formulation Compositions and Freezing Rates on the Conformational Changes of Influenza Virus Haemagglutinin (HA)

Authors: Thanh Phuong Doan, Narueporn Sutanthavibul

Abstract:

The influence of freezing cycle on influenza haemagglutinin (HA) conformational stability was investigated in terms of freezing rates and formulation compositions. The results showed that appropriate HA conformation could be evaluated using circular dichroism (CD) spectroscopy with HA concentration of greater than 0.09 mg/ml. The intermediate freezing rate of approximately 1.0oC/min preserved the original HA conformation better than at slow freezing rate (0.5oC/min) and rapid freezing rate (2.6oC/min). The changes in CD spectra of the secondary HA structure were more pronounced than those of the tertiary HA structure during the evaluation. Additionally, the formulations, which resulted in the highest conformational stability were found to have sucrose present in the composition. As opposed to when only glycine was used, the stability of HA conformation was poor.

Keywords: freezing, haemagglutinin, influenza, circular dichroism

Procedia PDF Downloads 388
3112 Gut Mycobiome Dysbiosis and Its Impact on Intestinal Permeability in Attention-Deficit/Hyperactivity Disorder

Authors: Liang-Jen Wang, Sung-Chou Li, Yuan-Ming Yeh, Sheng-Yu Lee, Ho-Chang Kuo, Chia-Yu Yang

Abstract:

Background: Dysbiosis in the gut microbial community might be involved in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The fungal component of the gut microbiome, namely the mycobiota, is a hyperdiverse group of multicellular eukaryotes that can influence host intestinal permeability. This study therefore aimed to investigate the impact of fungal mycobiome dysbiosis and intestinal permeability on ADHD. Methods: Faecal samples were collected from 35 children with ADHD and from 35 healthy controls. Total DNA was extracted from the faecal samples, and the internal transcribed spacer (ITS) regions were sequenced using high-throughput next-generation sequencing (NGS). The fungal taxonomic classification was analysed using bioinformatics tools, and the differentially expressed fungal species between the ADHD and healthy control groups were identified. An in vitro permeability assay (Caco-2 cell layer) was used to evaluate the biological effects of fungal dysbiosis on intestinal epithelial barrier function. Results: The β-diversity (the species diversity between two communities), but not α-diversity (the species diversity within a community), reflected the differences in fungal community composition between ADHD and control groups. At the phylum level, the ADHD group displayed a significantly higher abundance of Ascomycota and significantly lower abundance of Basidiomycota than the healthy control group. At the genus level, the abundance of Candida (especially Candida albicans) was significantly increased in ADHD patients compared to the healthy controls. In addition, the in vitro cell assay revealed that C. albicans secretions significantly enhanced the permeability of Caco-2 cells. Conclusions: The current study is the first to explore altered gut mycobiome dysbiosis using the NGS platform in ADHD. The findings from this study indicated that dysbiosis of the fungal mycobiome and intestinal permeability might be associated with susceptibility to ADHD.

Keywords: ADHD, fungus, gut–brain axis, biomarker, child psychiatry

Procedia PDF Downloads 107
3111 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 130
3110 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis

Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh

Abstract:

The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.

Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini

Procedia PDF Downloads 188
3109 Identification of Genes Regulating Differentiation and Stemness of Human Mesenchymal Stem Cells for Gene Therapy in Regenerative Medicine

Authors: Tong Ming Liu

Abstract:

Human mesenchymal stem cells (MSCs) represent the most used stem cells for clinical application, which have been used in over 1000 clinical trials to treat over 30 diseases due to multilineage differentiation potential, secretome and immunosuppression. Gene therapies of MSCs hold great promise in the treatment of many diseases due to enhanced MSC-based clinical outcomes. To identify genes for gene therapy of MSCs, by comparing gene expression profile before and after MSC differentiation following by functional screening, we have identified ZNF145 that regulated MSC differentiation. Forced expression of ZNF145 resulted in enhanced in vitro chondrogenesis of MSCs as an upstream factor of SOX9 and improved osteochondral repair upon implant into osteochondral defects in rodents. By comparing gene expression profile during differentiation of iPSCs toward MSCs, we also identified gene HOX regulating MSC stemness, which was much downregulated in late-passaged MSCs. Knockdown of this gene greatly compromised MSC stemness including abolished proliferation, decreased CFU-F, promoted senescence and reduced expression of cell surface antigens linked to the MSC phenotype. In addition, multi-linage differentiation was also greatly impaired. Notably, HOX overexpression resulted in improved multi-lineage differentiation. In the mechanism, HOX expression significantly deceased in late passage of MSCs compared with early passage of MSCs, correlating with MSC important genes. ChIP-seq data shown that HOX binds to genes related to MSC self-renewal and differentiation. Most importantly, most HOX binding sites are lost in late passage of MSCs. HOX exerts its effects by directing binding Twist1, one important gene of MSCs. The identification of the genes regulating MSC differentiation and stemness will provide and promising strategies for gene therapy of MSCs in regenerative medicine.

Keywords: mesenchymal stem cell, novel transcription factor, stemness, gene therapy, cartilage repair, signaling pathway

Procedia PDF Downloads 49
3108 T Cell Immunity Profile in Pediatric Obesity and Asthma

Authors: Mustafa M. Donma, Erkut Karasu, Burcu Ozdilek, Burhan Turgut, Birol Topcu, Burcin Nalbantoglu, Orkide Donma

Abstract:

The mechanisms underlying the association between obesity and asthma may be related to a decreased immunological tolerance induced by a defective function of regulatory T cells (Tregs). The aim of this study is to establish the potential link between these diseases and CD4+, CD25+ FoxP3+ Tregs as well as T helper cells (Ths) in children. This is a prospective case control study. Obese (n:40), asthmatic (n:40), asthmatic obese (n:40), and healthy children (n:40), who don't have any acute or chronic diseases, were included in this study. Obese children were evaluated according to WHO criteria. Asthmatic patients were chosen based on GINA criteria. Parents were asked to fill up the questionnaire. Informed consent forms were taken. Blood samples were marked with CD4+, CD25+ and FoxP3+ in order to determine Tregs and Ths by flow cytometric method. Statistical analyses were performed. p≤0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0,16%; p≤0,001), asthmatic (0,25%; p≤0,01) and asthmatic obese (0,29%; p≤0,05) groups than the control group (0,38%). Ths were counted higher in asthma group than the control (p≤0,01) and obese (p≤0,001)) groups. T cell immunity plays important roles in obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic and asthmatic obese children may help to elucidate some questions in pathophysiology of these diseases. For HOMA-IR levels, any significant difference was not noted between control and obese groups, but statistically higher values were found for obese asthmatics. The values obtained in all groups were found to be below the critical cut off points. This finding has made the statistically significant difference observed between Tregs of obese, asthmatic, obese asthmatic, and control groups much more valuable. These findings will be useful in diagnosis and treatment of these disorders and future studies are needed. The production and propagation of Tregs may be promising in alternative asthma and obesity treatments.

Keywords: asthma, flow cytometry, pediatric obesity, T cells

Procedia PDF Downloads 339
3107 Ontology as Knowledge Capture Tool in Organizations: A Literature Review

Authors: Maria Margaretha, Dana Indra Sensuse, Lukman

Abstract:

Knowledge capture is a step in knowledge life cycle to get knowledge in the organization. Tacit and explicit knowledge are needed to organize in a path, so the organization will be easy to choose which knowledge will be use. There are many challenges to capture knowledge in the organization, such as researcher must know which knowledge has been validated by an expert, how to get tacit knowledge from experts and make it explicit knowledge, and so on. Besides that, the technology will be a reliable tool to help the researcher to capture knowledge. Some paper wrote how ontology in knowledge management can be used for proposed framework to capture and reuse knowledge. Organization has to manage their knowledge, process capture and share will decide their position in the business area. This paper will describe further from literature review about the tool of ontology that will help the organization to capture its knowledge.

Keywords: knowledge capture, ontology, technology, organization

Procedia PDF Downloads 596
3106 Slow Pyrolysis of Bio-Wastes: Environmental, Exergetic, and Energetic (3E) Assessment

Authors: Daniela Zalazar-Garcia, Erick Torres, German Mazza

Abstract:

Slow pyrolysis of a pellet of pistachio waste was studied using a lab-scale stainless-steel reactor. Experiments were conducted at different heating rates (5, 10, and 15 K/min). A 3-E (environmental, exergetic, and energetic) analysis for the processing of 20 kg/h of bio-waste was carried out. Experimental results showed that biochar and gas yields decreased with an increase in the heating rate (43 to 36 % and 28 to 24 %, respectively), while the bio-oil yield increased (29 to 40 %). Finally, from the 3-E analysis and the experimental results, it can be suggested that an increase in the heating rate resulted in a higher pyrolysis exergetic efficiency (70 %) due to an increase of the bio-oil yield with high-energy content.

Keywords: 3E assessment, bio-waste pellet, life cycle assessment, slow pyrolysis

Procedia PDF Downloads 213
3105 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries

Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez

Abstract:

Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.

Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS

Procedia PDF Downloads 123
3104 Well-Being of Elderly with Nanonutrients

Authors: Naqvi Shraddha Rathi

Abstract:

During the aging process, physical frailty may develop. A more sedentary lifestyle, a reduction in metabolic cell mass and, consequently, lower energy expenditure and dietary intake are important contributors to the progression of frailty. A decline in intake is in turn associated with the risk of developing a suboptimal nutritional state or multiple micro nutrient deficiencies.The tantalizing potential of nanotechnology is to fabricate and combine nano scale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm.

Keywords: aging, cells frailty, micronutrients, biochemical reactivity

Procedia PDF Downloads 389
3103 The Contemporary Issues of Quality Management: Relationship between Total Quality Management and Knowledge Management

Authors: Mehrnoosh Askarizadeh

Abstract:

To meet the challenges of the new global environment, companies have started paying great attention towards quality management as an integral part of their strategic business plans. The purpose of this article is to investigate the relationship between total quality management (TQM) and knowledge management (KM). Successful total quality management implementation throughout the organizations requires major changes in the main four aspects of knowledge management, namely: Creating, storage, sharing and application. Skill, knowledge and productivity are important factors in organization’s success and have important role. Therefore, TQM management system pays special attention to it. However, knowledge as the source is essential for organization’s survival. Our study points out how the quality management and knowledge management have been incorporated into each other for the development of the quality culture within the organization.

Keywords: knowledge management (KM), total quality management (TQM), organizational performance (OP), deming cycle

Procedia PDF Downloads 474
3102 Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis

Authors: S. Y. Park, S. M. Lee, S. H. Lee, K. M. Lim

Abstract:

In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature.

Keywords: cooling curve, element, grey cast iron, thermal analysis, rare earth element

Procedia PDF Downloads 352
3101 Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries

Authors: Malika Foudia, Larbi Zerroual

Abstract:

The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases.

Keywords: lead-acid battery, additives, positive plate, impedance (EIS).

Procedia PDF Downloads 410
3100 Histopathological, Proliferative, Apoptotic, and Hormonal Characteristics of Various Types of Leiomyomas

Authors: Kiknadze T, Tevdorashvili G, Muzashvili T, Gachechiladze M, Burkadze G

Abstract:

Uterine leiomyomas decrease the quality of life by causing significant morbidity among women of reproductive age. Histologically various types of leiomyoma's can be differentiated. We have analysed th histopathological, proliferation, apoptotic, and hormonal profile in different types of leiomyomas. Study included altogether140 cases distributed into the following groups: group I-normal myometrium (20cases), group II-classic leiomyoma (69 cases), group III-cellular leiomyoma (15 cases), group IV-bizarre cell/atypical leiomyoma (22cases), group V-smooth muscle tumors of uncertain malignancy potential (STUMP) (8 cases) and group VI-leiomyosarcoma (6 cases). Together with classic histopathological features such as nuclear atypia, cellularity, presence of mitoses, vasculature and necrosis, immunohistochemical phenotype using antibodies against Ki67,Cas3, ER, and PR were analysed. The results of our study showed that leiomyomas are charterised with variable histopathological and immunohistocthemical phenotype. Histopathological parameters mainly correlate with the degree of malignancy except for two bizarre/atypical leiomyoma and STUMP, where two distinct subgroups could be identified. In bizarre/ atipycal leiomyoma, 31% of cases are characterized with the features of classic leiomyoma, whilst the rest of the cases reveal more atipycal phenotype. In STUMP 37.5 % of cases are characterized with the features of atipycal leiomyomas. The result of the immunohistochemical study also reveald that half of bizarre/atipycal leiomyomas are characterized with the low proliferation index, high apoptotic index, and high ER and PR index, whilst another half is characterized with high proliferation index, low apoptotic index, and low ER and PR index. Similarly, part of the STUMP cases are characterized with low proliferation index, high Er, and PR index and whilst part of the cases are characterized whith high proliferation index, low apoptotic index and low ER and PR index. The results of the histopathological and immunohistochemical study indicate that these two entities represent the heterogenous group of diseases, which might be the explanation of their different prognosis. Presented histopathological and immunohistochemical features should be considered in the diagnosis of myometrial smooth muscle tumors.

Keywords: proliferation, apoptosis, bizarre cell, leiomyosarcoma., leiomyoma

Procedia PDF Downloads 105
3099 The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model

Authors: Maryam Radan, Fereshteh Nejad Dehbashi, Vahid Bayati, Mahin Dianat, Seyyed Ali Mard, Zahra Mansouri

Abstract:

Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs.

Keywords: mesenchymal stem cell, emphysema, Intratracheal, systemic

Procedia PDF Downloads 208
3098 Alternative Housing Systems: Influence on Blood Profile of Egg-Type Chickens in Humid Tropics

Authors: Olufemi M. Alabi, Foluke A. Aderemi, Adebayo A. Adewumi, Banwo O. Alabi

Abstract:

General well-being of animals is of paramount interest in some developed countries and of global importance hence the shift onto alternative housing systems for egg-type chickens as replacement for conventional battery cage system. However, there is paucity of information on the effect of this shift on physiological status of the hens to judge their health via the blood profile. Therefore, investigation was carried out on two strains of hen kept in three different housing systems in humid tropics to evaluate changes in their blood parameters. 108, 17-weeks old super black (SBL) hens and 108, 17-weeks old super brown (SBR) hens were randomly allotted to three different intensive systems Partitioned Conventional Cage (PCC), Extended Conventional Cage (ECC) and Deep Litter System (DLS) in a randomized complete block design with 36 hens per housing system, each with three replicates. The experiment lasted 37 weeks during which blood samples were collected at 18th week of age and bi-weekly thereafter for analyses. Parameters measured are packed cell volume (PCV), hemoglobin concentration (Hb), red blood counts (RBC), white blood counts (WBC) and serum metabolites such as total protein (TP), albumin (Alb), globulin (Glb), glucose, cholesterol, urea, bilirubin, serum cortisol while blood indices such as mean corpuscular hemoglobin (MCH), mean cell volume (MCV) and mean corpuscular hemoglobin concentration (MCHC) were calculated. The hematological values of the hens were not significantly (p>0.05) affected by the housing system and strain, so also the serum metabolites except for the serum cortisol which was significantly (p<0.05) affected by the housing system only. Hens housed on PCC had higher values (20.05 ng/ml for SBL and 20.55 ng/ml for SBR) followed by hens on ECC (18.15ng/ml for SBL and 18.38ng/ml for SBL) while hens on DLS had the lowest value (16.50ng/ml for SBL and 16.00ng/ml for SBR) thereby confirming indication of stress with conventionally caged birds. Alternative housing systems can also be adopted for egg-type chickens in the humid tropics from welfare point of view with the results of this work confirming stress among caged hens.

Keywords: blood, housing, humid-tropics, layers

Procedia PDF Downloads 459
3097 Risk of Fatal and Non-Fatal Coronary Heart Disease and Stroke Events among Adult Patients with Hypertension: Basic Markov Model Inputs for Evaluating Cost-Effectiveness of Hypertension Treatment: Systematic Review of Cohort Studies

Authors: Mende Mensa Sorato, Majid Davari, Abbas Kebriaeezadeh, Nizal Sarrafzadegan, Tamiru Shibru, Behzad Fatemi

Abstract:

Markov model, like cardiovascular disease (CVD) policy model based simulation, is being used for evaluating the cost-effectiveness of hypertension treatment. Stroke, angina, myocardial infarction (MI), cardiac arrest, and all-cause mortality were included in this model. Hypertension is a risk factor for a number of vascular and cardiac complications and CVD outcomes. Objective: This systematic review was conducted to evaluate the comprehensiveness of this model across different regions globally. Methods: We searched articles written in the English language from PubMed/Medline, Ovid/Medline, Embase, Scopus, Web of Science, and Google scholar with a systematic search query. Results: Thirteen cohort studies involving a total of 2,165,770 (1,666,554 hypertensive adult population and 499,226 adults with treatment-resistant hypertension) were included in this scoping review. Hypertension is clearly associated with coronary heart disease (CHD) and stroke mortality, unstable angina, stable angina, MI, heart failure (HF), sudden cardiac death, transient ischemic attack, ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, peripheral arterial disease (PAD), and abdominal aortic aneurism (AAA). Association between HF and hypertension is variable across regions. Treatment resistant hypertension is associated with a higher relative risk of developing major cardiovascular events and all-cause mortality when compared with non-resistant hypertension. However, it is not included in the previous CVD policy model. Conclusion: The CVD policy model used can be used in most regions for the evaluation of the cost-effectiveness of hypertension treatment. However, hypertension is highly associated with HF in Latin America, the Caribbean, Eastern Europe, and Sub-Saharan Africa. Therefore, it is important to consider HF in the CVD policy model for evaluating the cost-effectiveness of hypertension treatment in these regions. We do not suggest the inclusion of PAD and AAA in the CVD policy model for evaluating the cost-effectiveness of hypertension treatment due to a lack of sufficient evidence. Researchers should consider the effect of treatment-resistant hypertension either by including it in the basic model or during setting the model assumptions.

Keywords: cardiovascular disease policy model, cost-effectiveness analysis, hypertension, systematic review, twelve major cardiovascular events

Procedia PDF Downloads 67
3096 Essay on Theoretical Modeling of the Wealth Effect of Sukuk

Authors: Jamel Boukhatem, Mouldi Djelassi

Abstract:

Contrary to the existing literature generally focusing on the role played by Sukuk in enhancing investors' and shareholders' wealth, this paper sheds some light on the Sukuk wealth effect across all economic agents: households, government, and investors by implementing a two-period life-cycle model with overlapping generations to show whether Sukuk is net wealth. The main findings are threefold: i) the effect of a change in Sukuk issuances on the consumers’ utility level will be different from one generation to another, ii) an increase in taxes due to the increase in Sukuk and rents is covered by transfers made by the members of generation 1 in the form of inheritance, and iii) the existence of a positive relationship between the asset prices representative of Sukuk and the real activity.

Keywords: Sukuk, households, investors, overlapping generations model, wealth, modeling

Procedia PDF Downloads 74
3095 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 89
3094 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 179
3093 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 162
3092 Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model

Authors: Boukelkoul Lahcen

Abstract:

The cumulative costs for O&M may represent as much as 65%-90% of the turbine's investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance.

Keywords: cost, finite state, Markov model, operation and maintenance

Procedia PDF Downloads 527
3091 Press Hardening of Tubes with Additional Interior Spray Cooling

Authors: B. A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier

Abstract:

Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.

Keywords: 22MnB5, press hardening, water-air spray cooling, hollow profiles, tubes

Procedia PDF Downloads 267
3090 Study of Three-Dimensional Computed Tomography of Frontoethmoidal Cells Using International Frontal Sinus Anatomy Classification

Authors: Prabesh Karki, Shyam Thapa Chettri, Bajarang Prasad Sah, Manoj Bhattarai, Sudeep Mishra

Abstract:

Introduction: Frontal sinus is frequently described as the most difficult sinus to access surgically due to its proximity to the cribriform plate, orbit, and anterior ethmoid artery. Frontal sinus surgery requires a detailed understanding of the cellular structure and FSDP unique to each patient, making high-resolution CT scans an indispensable tool to assess the difficulty of planned sinus surgery. International Frontal Sinus Anatomy Classification (IFAC) was developed to provide a more precise nomenclature for cells in the frontal recess, classifying cells based on their anatomic origin. Objectives: To assess the proportion of frontal cell variants defined by IFAC, variation with respect to age and gender. Methods: 54 cases were enrolled after a detailed clinical history, thorough general and physical examinations, and CT a report ordered in a film. Assessment and tabulation of the presence of frontal cells according to the IFAC analyzed. The prevalence of each cell type was calculated, and data were entered in MS Excel and analyzed using Statistical Package for the Social Sciences (SPSS). Descriptive statistics and frequencies were defined for categorical and numerical variables. Frequency, percentage, the mean and standard deviation were calculated. Result: Among 54 patients, 30 (55.6%) were male and 24 (44.4%) were female. The patient enrolled ranged from 18 to 78 years. Majority33.3% (n=18) were in age group of >50 years.According to IFAC, Agger nasi cells (92.6%) were most common, whereas supraorbital ethmoidal cells were least common 16 (29.6%). Prevalence of other frontoethmoidal cells was SAC- 57.4%, SAFC- 38.9%, SBC- 74.1%, SBFC- 33.3%, FSC- 38.9% of 54 cases. Conclusion: IFAC is an international consensus document that describes an anatomically precise nomenclature for classifying frontoethmoidal cells' anatomy. This study has defined the prevalence, symmetry and reliability of frontoethmoidal cells as established by the IFAC system as in other parts of the world.

Keywords: frontal sinus, frontoethmoidal cells, international frontal sinus anatomy classification

Procedia PDF Downloads 93
3089 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

Authors: Shengqi Yu, Jinwei Zhao

Abstract:

This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.

Keywords: time base circuit, automatic control, zero-crossing trigger, temperature control

Procedia PDF Downloads 473
3088 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis

Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo

Abstract:

Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.

Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine

Procedia PDF Downloads 163
3087 Electrochemical Inactivation of Toxic Cyanobacteria and Degradation of Cyanotoxins

Authors: Belal Bakheet, John Beardall, Xiwang Zhang, David McCarthy

Abstract:

The potential risks associated with toxic cyanobacteria have raised growing environmental and public health concerns leading to an increasing effort into researching ways to bring about their removal from water, together with destruction of their associated cyanotoxins. A variety of toxins are synthesized by cyanobacteria and include hepatotoxins, neurotoxins, and cytotoxins which can cause a range of symptoms in humans from skin irritation to serious liver and nerve damage. Therefore drinking water treatment processes should ensure the consumers’ safety by removing both cyanobacterial cells, and cyanotoxins from the water. Cyanobacterial cells and cyanotoxins presented challenges to the conventional water treatment systems; their accumulation within drinking water treatment plants has been reported leading to plants shut down. Thus, innovative and effective water purification systems to tackle cyanobacterial pollution are required. In recent years there has been increasing attention to the electrochemical oxidation process as a feasible alternative disinfection method which is able to generate in situ a variety of oxidants that would achieve synergistic effects in the water disinfection process and toxin degradation. By utilizing only electric current, the electrochemical process through electrolysis can produce reactive oxygen species such as hydroxyl radicals from the water, or other oxidants such as chlorine from chloride ions present in the water. From extensive physiological and morphological investigation of cyanobacterial cells during electrolysis, our results show that these oxidants have significant impact on cell inactivation, simultaneously with cyanotoxins removal without the need for chemicals addition. Our research aimed to optimize existing electrochemical oxidation systems and develop new systems to treat water containing toxic cyanobacteria and cyanotoxins. The research covers detailed mechanism study on oxidants production and cell inactivation in the treatment under environmental conditions. Overall, our study suggests that the electrochemical treatment process e is an effective method for removal of toxic cyanobacteria and cyanotoxins.

Keywords: toxic cyanobacteria, cyanotoxins, electrochemical process, oxidants

Procedia PDF Downloads 228
3086 Impact Analysis Based on Change Requirement Traceability in Object Oriented Software Systems

Authors: Sunil Tumkur Dakshinamurthy, Mamootil Zachariah Kurian

Abstract:

Change requirement traceability in object oriented software systems is one of the challenging areas in research. We know that the traces between links of different artifacts are to be automated or semi-automated in the software development life cycle (SDLC). The aim of this paper is discussing and implementing aspects of dynamically linking the artifacts such as requirements, high level design, code and test cases through the Extensible Markup Language (XML) or by dynamically generating Object Oriented (OO) metrics. Also, non-functional requirements (NFR) aspects such as stability, completeness, clarity, validity, feasibility and precision are discussed. We discuss this as a Fifth Taxonomy, which is a system vulnerability concern.

Keywords: artifacts, NFRs, OO metrics, SDLC, XML

Procedia PDF Downloads 332
3085 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 334