Search results for: metallography characterization
123 The Forms of Representation in Architectural Design Teaching: The Cases of Politecnico Di Milano and Faculty of Architecture of the University of Porto
Authors: Rafael Sousa Santos, Clara Pimena Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
The representative component, a determining aspect of the architect's training, has been marked by an exponential and unprecedented development. However, the multiplication of possibilities has also multiplied uncertainties about architectural design teaching, and by extension, about the very principles of architectural education. In this paper, it is intended to present the results of a research developed on the following problem: the relation between the forms of representation and the architectural design teaching-learning processes. The research had as its object the educational model of two schools – the Politecnico di Milano (POLIMI) and the Faculty of Architecture of the University of Porto (FAUP) – and was led by three main objectives: to characterize the educational model followed in both schools focused on the representative component and its role; to interpret the relation between forms of representation and the architectural design teaching-learning processes; to consider their possibilities of valorisation. Methodologically, the research was conducted according to a qualitative embedded multiple-case study design. The object – i.e., the educational model – was approached in both POLIMI and FAUP cases considering its Context and three embedded unities of analysis: the educational Purposes, Principles, and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is assumed; the architectural design classes, expressing how the model is achieved; and the students, expressing how the model is acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal the importance of the representative component in the educational model of both cases, despite the differences in its role. In POLIMI's model, representation is particularly relevant in the teaching of architectural design, while in FAUP’s model, it plays a transversal role – according to an idea of 'general training through hand drawing'. In fact, the difference between models relative to representation can be partially understood by the level of importance that each gives to hand drawing. Regarding the teaching of architectural design, the two cases are distinguished in the relation with the representative component: while in POLIMI the forms of representation serve essentially an instrumental purpose, in FAUP they tend to be considered also for their methodological dimension. It seems that the possibilities for valuing these models reside precisely in the relation between forms of representation and architectural design teaching. It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance of the educational model of POLIMI and FAUP; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the forms of representation and its relation with architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, educational models, forms of representation
Procedia PDF Downloads 121122 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark
Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li
Abstract:
Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy
Procedia PDF Downloads 354121 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts
Authors: Ewelina Grabowska, Martyna Marchelek
Abstract:
Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation
Procedia PDF Downloads 221120 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity
Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido
Abstract:
Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens
Procedia PDF Downloads 287119 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application
Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough
Abstract:
In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.Keywords: casting, cast iron, microstructure, heat treating
Procedia PDF Downloads 104118 Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens
Authors: Dereje Regasa
Abstract:
The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system.Keywords: agroecology, diversity, recycling, sustainable food system, transition
Procedia PDF Downloads 85117 Production and Characterization of Biochars from Torrefaction of Biomass
Authors: Serdar Yaman, Hanzade Haykiri-Acma
Abstract:
Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.Keywords: biochar, biomass, fuel upgrade, torrefaction
Procedia PDF Downloads 373116 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 136115 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling
Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci
Abstract:
Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.Keywords: land use, spatial resolution, WRF-Chem, air quality assessment
Procedia PDF Downloads 152114 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 172113 Sugarcane Trash Biochar: Effect of the Temperature in the Porosity
Authors: Gabriela T. Nakashima, Elias R. D. Padilla, Joao L. Barros, Gabriela B. Belini, Hiroyuki Yamamoto, Fabio M. Yamaji
Abstract:
Biochar can be an alternative to use sugarcane trash. Biochar is a solid material obtained from pyrolysis, that is a biomass thermal degradation with low or no O₂ concentration. Pyrolysis transforms the carbon that is commonly found in other organic structures into a carbon with more stability that can resist microbial decomposition. Biochar has a versatility of uses such as soil fertility, carbon sequestration, energy generation, ecological restoration, and soil remediation. Biochar has a great ability to retain water and nutrients in the soil so that this material can improve the efficiency of irrigation and fertilization. The aim of this study was to characterize biochar produced from sugarcane trash in three different pyrolysis temperatures and determine the lowest temperature with the high yield and carbon content. Physical characterization of this biochar was performed to help the evaluation for the best production conditions. Sugarcane (Saccharum officinarum) trash was collected at Corredeira Farm, located in Ibaté, São Paulo State, Brazil. The farm has 800 hectares of planted area with an average yield of 87 t·ha⁻¹. The sugarcane varieties planted on the farm are: RB 855453, RB 867515, RB 855536, SP 803280, SP 813250. Sugarcane trash was dried and crushed into 50 mm pieces. Crucibles and lids were used to settle the sugarcane trash samples. The higher amount of sugarcane trash was added to the crucible to avoid the O₂ concentration. Biochar production was performed in three different pyrolysis temperatures (200°C, 325°C, 450°C) in 2 hours residence time in the muffle furnace. Gravimetric yield of biochar was obtained. Proximate analysis of biochar was done using ASTM E-872 and ABNT NBR 8112. Volatile matter and ash content were calculated by direct weight loss and fixed carbon content calculated by difference. Porosity measurement was evaluated using an automatic gas adsorption device, Autosorb-1, with CO₂ described by Nakatani. Approximately 0.5 g of biochar in 2 mm particle sizes were used for each measurement. Vacuum outgassing was performed as a pre-treatment in different conditions for each biochar temperature. The pore size distribution of micropores was determined using Horváth-Kawazoe method. Biochar presented different colors for each treatment. Biochar - 200°C presented a higher number of pieces with 10mm or more and did not present the dark black color like other treatments after 2 h residence time in muffle furnace. Also, this treatment had the higher content of volatiles and the lower amount of fixed carbon. In porosity analysis, while the temperature treatments increase, the amount of pores also increase. The increase in temperature resulted in a biochar with a better quality. The pores in biochar can help in the soil aeration, adsorption, water retention. Acknowledgment: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – PROAP-CAPES, PDSE and CAPES - Finance Code 001.Keywords: proximate analysis, pyrolysis, soil amendment, sugarcane straw
Procedia PDF Downloads 211112 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin
Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng
Abstract:
The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin
Procedia PDF Downloads 75111 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach
Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh
Abstract:
Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling
Procedia PDF Downloads 40110 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography
Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias
Abstract:
In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA
Procedia PDF Downloads 329109 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section
Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert
Abstract:
Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics
Procedia PDF Downloads 256108 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets
Procedia PDF Downloads 122107 Multicenter Evaluation of the ACCESS Anti-HCV Assay on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis C Virus Antibody
Authors: Dan W. Rhodes, Juliane Hey, Magali Karagueuzian, Florianne Martinez, Yael Sandowski, Vanessa Roulet, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin
Abstract:
Background: Beckman Coulter, Inc. (BEC) has recently developed a fully automated second-generation anti-HCV test on a new immunoassay platform. The objective of this multicenter study conducted in Europe was to evaluate the performance of the ACCESS anti-HCV assay on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer as an aid in the diagnosis of HCV (Hepatitis C Virus) infection and as a screening test for blood and plasma donors. Methods: The clinical specificity of the ACCESS anti-HCV assay was determined using HCV antibody-negative samples from blood donors and hospitalized patients. Sample antibody status was determined by a CE-marked anti-HCV assay (Abbott ARCHITECTTM anti-HCV assay or Abbott PRISM HCV assay) with an additional confirmation method (Immunoblot testing with INNO-LIATM HCV Score - Fujirebio), if necessary, according to pre-determined testing algorithms. The clinical sensitivity was determined using known HCV antibody-positive samples, identified positive by Immunoblot testing with INNO-LIATM HCV Score - Fujirebio. HCV RNA PCR or genotyping was available on all Immunoblot positive samples for further characterization. The false initial reactive rate was determined on fresh samples from blood donors and hospitalized patients. Thirty (30) commercially available seroconversion panels were tested to assess the sensitivity for early detection of HCV infection. The study was conducted from November 2019 to March 2022. Three (3) external sites and one (1) internal site participated. Results: Clinical specificity (95% CI) was 99.7% (99.6 – 99.8%) on 5852 blood donors and 99.0% (98.4 – 99.4%) on 1527 hospitalized patient samples. There were 15 discrepant samples (positive on ACCESS anti-HCV assay and negative on both ARCHITECT and Immunoblot) observed with hospitalized patient samples, and of note, additional HCV RNA PCR results showed five (5) samples had positive HCV RNA PCR results despite the absence of HCV antibody detection by ARCHITECT and Immunoblot, suggesting a better sensitivity of the ACCESS anti-HCV assay with these five samples compared to the ARCHITECT and Immunoblot anti-HCV assays. Clinical sensitivity (95% CI) on 510 well-characterized, known HCV antibody-positive samples was 100.0% (99.3 – 100.0%), including 353 samples with known HCV genotypes (1 to 6). The overall false initial reactive rate (95% CI) on 6630 patient samples was 0.02% (0.00 – 0.09%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS anti-HCV assay had equivalent sensitivity performances, with an average bleed difference since the first reactive bleed below one (1), compared to the ARCHITECTTM anti-HCV assay. Conclusion: The newly developed ACCESS anti-HCV assay from BEC for use on the DxI 9000 ACCESS Immunoassay Analyzer demonstrated high clinical sensitivity and specificity, equivalent to currently marketed anti-HCV assays, as well as a low false initial reactive rate.Keywords: DxI 9000 ACCESS Immunoassay Analyzer, HCV, HCV antibody, Hepatitis C virus, immunoassay
Procedia PDF Downloads 98106 Coping Strategies and Characterization of Vulnerability in the Perspective of Climate Change
Authors: Muhammad Umer Mehmood, Muhammad Luqman, Muhammad Yaseen, Imtiaz Hussain
Abstract:
Climate change is an arduous fact, which could not be unheeded easily. It is a phenomenon which has brought a collection of challenges for the mankind. Scientists have found many of its negative impacts on the life of human being and the resources on which the life of humanity is dependent. There are many issues which are associated with the factor of prime importance in this study, 'climate change'. Whenever changes happen in nature, they strike the whole globe. Effects of these changes vary from region to region. Climate of every region of this globe is different from the other. Even within a state, country or the province has different climatic conditions. So it is mandatory that the response in that specific region and the coping strategy of this specific region should be according to the prevailing risk. In the present study, the objective was to assess the coping strategies and vulnerability of small landholders. So that a professional suggestion could be made to cope with the vulnerability factor of small farmers. The cross-sectional research design was used with the intervention of quantitative approach. The study was conducted in the Khanewal district, of Punjab, Pakistan. 120 small farmers were interviewed after randomized sampling from the population of respective area. All respondents were above the age of 15 years. A questionnaire was developed after keen observation of facts in the respective area. Content and face validity of the instrument was assessed with SPSS and experts in the field. Data were analyzed through SPSS using descriptive statistics. From the sample of 120, 81.67% of the respondents claimed that the environment is getting warmer and not fit for their present agricultural practices. 84.17% of the sample expressed serious concern that they are disturbed due to change in rainfall pattern and vulnerability towards the climatic effects. On the other hand, they expressed that they are not good at tackling the effects of climate change. Adaptation of coping strategies like change in cropping pattern, use of resistant varieties, varieties with minimum water requirement, intercropping and tree planting was low by more than half of the sample. From the sample 63.33% small farmers said that the coping strategies they adopt are not effective enough. The present study showed that subsistence farming, lack of marketing and overall infrastructure, lack of access to social security networks, limited access to agriculture extension services, inappropriate access to agrometeorological system, unawareness and access to scientific development and low crop yield are the prominent factors which are responsible for the vulnerability of small farmers. A comprehensive study should be conducted at national level so that a national policy could be formulated to cope with the dilemma in future with relevance to climate change. Mainstreaming and collaboration among the researchers and academicians could prove beneficiary in this regard the interest of national leaders’ does matter. Proper policies to avoid the vulnerability factors should be the top priority. The world is taking up this issue with full responsibility as should we, keeping in view the local situation.Keywords: adaptation, coping strategies, climate change, Pakistan, small farmers, vulnerability
Procedia PDF Downloads 141105 Arisarum Vulgare: Bridging Tradition and Science through Phytochemical Characterization and Exploring Therapeutic Potential via in vitro and in vivo Biological Activities
Authors: Boudjelal Amel
Abstract:
Arisarum vulgare, a member of the Araceae family, is an herbaceous perennial widely distributed in the Mediterranean region. A. vulgare is recognized for its medicinal properties and holds significant traditional importance in Algeria for the treatment of various human ailments, including pain, infections, inflammation, digestive disorders, skin problems, eczema, cancer, wounds, burns and gynecological diseases. Despite its extensive traditional use, scientific exploration of A. vulgare remains limited. The study aims to investigate for the first time the therapeutic potential of A. vulgare ethanolic extract obtained by ultrasound-assisted extraction. The chemical composition of the extract was determined by LC-MS/MS analysis. For in vitro phytopharmacological evaluation, several assays, including DPPH, ABTS, FRAP and reducing power, were employed to evaluate the antioxidant activity. The antibacterial activity was assessed againt Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium by disk diffusion and microdilution methods. The possible inhibitory activity of ethanolic extract was analyzed against the cholinesterases enzymes (AChE and BChE). The DNA protection activity of A. vulgare ethanolic extract was estimated using the agarose gel electrophoresis method. The capacities of the extract to protect plasmid DNA (pBR322) from the oxidizing effects of H2O2 and UV treatment were evaluated by their DNA-breaking forms. The in vivo wound healing potential of a traditional ointment containing 5% of A. vulgare ethanolic extract was also investigated. The LC-MS/MS profiling of the extract revealed the presence of various bioactive compounds, including naringenin, chlorogenic, vanillic, cafeic, coumaric acids, trans-cinnamic and trans ferrulic acids. The plant extract presented considerable antioxidant potential, being the most active for Reducing power (0,07326±0.001 mg/ml) and DPPH (0.14±0.004 mg/ml). The extract showed the highest inhibition zone diameter against Enterococcus feacium (36±0.1 mm). The ethanolic extract of A. vulgare suppressed the growth of Staphylococus aureus, Escherichia coli and Salmonella typhimurium according to the MIC values. The extract of the plant significantly inhibited both AChE and BChE enzymes. DNA protection activity of the A. vulgare extract was determined as 90.41% for form I and 51.92% for form II. The in vivo experiments showed that 5% ethanolic extract ointment accelerated the wound healing process. The topical application of the traditional formulation enhanced wound closure (95,36±0,6 %) and improved histological parameters in the treated group compared to the control groups. The promising biological properties of Arisarum vulgare revealed that the plant could be appraised as a potential origin of bioactive molecules having multifunctional medicinal uses.Keywords: arisarum vulgare, LC-MS/MS, antioxidant activity, antimicrobial activity, cholinesterases enzymes inhibition, dna-damage activity, in vivo wound healing
Procedia PDF Downloads 66104 i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)
Authors: Beatriz Rebocho, Elisabete Valente, Carla Palma, Andreia Guilherme, Filipa Bessa, Paula Sobral
Abstract:
The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment.Keywords: microplastics, Portugal, Atlantic Ocean, water column, surface water
Procedia PDF Downloads 80103 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 388102 Process of Production of an Artisanal Brewery in a City in the North of the State of Mato Grosso, Brazil
Authors: Ana Paula S. Horodenski, Priscila Pelegrini, Salli Baggenstoss
Abstract:
The brewing industry with artisanal concepts seeks to serve a specific market, with diversified production that has been gaining ground in the national environment, also in the Amazon region. This growth is due to the more demanding consumer, with a diversified taste that wants to try new types of beer, enjoying products with new aromas, flavors, as a differential of what is so widely spread through the big industrial brands. Thus, through qualitative research methods, the study aimed to investigate how is the process of managing the production of a craft brewery in a city in the northern State of Mato Grosso (BRAZIL), providing knowledge of production processes and strategies in the industry. With the efficient use of resources, it is possible to obtain the necessary quality and provide better performance and differentiation of the company, besides analyzing the best management model. The research is descriptive with a qualitative approach through a case study. For the data collection, a semi-structured interview was elaborated, composed of the areas: microbrewery characterization, artisan beer production process, and the company supply chain management. Also, production processes were observed during technical visits. With the study, it was verified that the artisan brewery researched develops preventive maintenance strategies with the inputs, machines, and equipment, so that the quality of the product and the production process are achieved. It was observed that the distance from the supplying centers makes the management of processes and the supply chain be carried out with a longer planning time so that the delivery of the final product is satisfactory. The production process of the brewery is composed of machines and equipment that allows the control and quality of the product, which the manager states that for the productive capacity of the industry and its consumer market, the available equipment meets the demand. This study also contributes to highlight one of the challenges for the development of small breweries in front of the market giants, that is, the legislation, which fits the microbreweries as producers of alcoholic beverages. This makes the micro and small business segment to be taxed as a major, who has advantages in purchasing large batches of raw materials and tax incentives because they are large employers and tax pickers. It was possible to observe that the supply chain management system relies on spreadsheets and notes that are done manually, which could be simplified with a computer program to streamline procedures and reduce risks and failures of the manual process. In relation to the control of waste and effluents affected by the industry is outsourced and meets the needs. Finally, the results showed that the industry uses preventive maintenance as a productive strategy, which allows better conditions for the production and quality of artisanal beer. The quality is directly related to the satisfaction of the final consumer, being prized and performed throughout the production process, with the selection of better inputs, the effectiveness of the production processes and the relationship with the commercial partners.Keywords: artisanal brewery, production management, production processes, supply chain
Procedia PDF Downloads 119101 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles
Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi
Abstract:
Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules
Procedia PDF Downloads 279100 Polymer Composites Containing Gold Nanoparticles for Biomedical Use
Authors: Bozena Tyliszczak, Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Agnieszka Sobczak-Kupiec
Abstract:
Introduction: Nanomaterials become one of the leading materials in the synthesis of various compounds. This is a reason for the fact that nano-size materials exhibit other properties compared to their macroscopic equivalents. Such a change in size is reflected in a change in optical, electric or mechanical properties. Among nanomaterials, particular attention is currently directed into gold nanoparticles. They find application in a wide range of areas including cosmetology or pharmacy. Additionally, nanogold may be a component of modern wound dressings, which antibacterial activity is beneficial in the viewpoint of the wound healing process. Specific properties of this type of nanomaterials result in the fact that they may also be applied in cancer treatment. Studies on the development of new techniques of the delivery of drugs are currently an important research subject of many scientists. This is due to the fact that along with the development of such fields of science as medicine or pharmacy, the need for better and more effective methods of administering drugs is constantly growing. The solution may be the use of drug carriers. These are materials that combine with the active substance and lead it directly to the desired place. A role of such a carrier may be played by gold nanoparticles that are able to covalently bond with many organic substances. This allows the combination of nanoparticles with active substances. Therefore gold nanoparticles are widely used in the preparation of nanocomposites that may be used for medical purposes with special emphasis on drug delivery. Methodology: As part of the presented research, synthesis of composites was carried out. The mentioned composites consisted of the polymer matrix and gold nanoparticles that were introduced into the polymer network. The synthesis was conducted with the use of a crosslinking agent, and photoinitiator and the materials were obtained by means of the photopolymerization process. Next, incubation studies were conducted using selected liquids that simulated fluids are occurring in the human body. The study allows determining the biocompatibility of the tested composites in relation to selected environments. Next, the chemical structure of the composites was characterized as well as their sorption properties. Conclusions: Conducted research allowed for the preliminary characterization of prepared polymer composites containing gold nanoparticles in the viewpoint of their application for biomedical use. Tested materials were characterized by biocompatibility in tested environments. What is more, synthesized composites exhibited relatively high swelling capacity that is essential in the viewpoint of their potential application as drug carriers. During such an application, composite swells and at the same time releases from its interior introduced active substance; therefore, it is important to check the swelling ability of such material. Acknowledgements: The authors would like to thank The National Science Centre (Grant no: UMO - 2016/21/D/ST8/01697) for providing financial support to this project. This paper is based upon work from COST Action (CA18113), supported by COST (European Cooperation in Science and Technology).Keywords: nanocomposites, gold nanoparticles, drug carriers, swelling properties
Procedia PDF Downloads 11599 Scenarios of Digitalization and Energy Efficiency in the Building Sector in Brazil: 2050 Horizon
Authors: Maria Fatima Almeida, Rodrigo Calili, George Soares, João Krause, Myrthes Marcele Dos Santos, Anna Carolina Suzano E. Silva, Marcos Alexandre Da
Abstract:
In Brazil, the building sector accounts for 1/6 of energy consumption and 50% of electricity consumption. A complex sector with several driving actors plays an essential role in the country's economy. Currently, the digitalization readiness in this sector is still low, mainly due to the high investment costs and the difficulty of estimating the benefits of digital technologies in buildings. Nevertheless, the potential contribution of digitalization for increasing energy efficiency in the building sector in Brazil has been pointed out as relevant in the political and sectoral contexts, both in the medium and long-term horizons. To contribute to the debate on the possible evolving trajectories of digitalization in the building sector in Brazil and to subsidize the formulation or revision of current public policies and managerial decisions, three future scenarios were created to anticipate the potential energy efficiency in the building sector in Brazil due to digitalization by 2050. This work aims to present these scenarios as a basis to foresight the potential energy efficiency in this sector, according to different digitalization paces - slow, moderate, or fast in the 2050 horizon. A methodological approach was proposed to create alternative prospective scenarios, combining the Global Business Network (GBN) and the Laboratory for Investigation in Prospective Strategy and Organisation (LIPSOR) methods. This approach consists of seven steps: (i) definition of the question to be foresighted and time horizon to be considered (2050); (ii) definition and classification of a set of key variables, using the prospective structural analysis; (iii) identification of the main actors with an active role in the digital and energy spheres; (iv) characterization of the current situation (2021) and identification of main uncertainties that were considered critical in the development of alternative future scenarios; (v) scanning possible futures using morphological analysis; (vi) selection and description of the most likely scenarios; (vii) foresighting the potential energy efficiency in each of the three scenarios, namely slow digitalization; moderate digitalization, and fast digitalization. Each scenario begins with a core logic and then encompasses potentially related elements, including potential energy efficiency. Then, the first scenario refers to digitalization at a slow pace, with induction by the government limited to public buildings. In the second scenario, digitalization is implemented at a moderate pace, induced by the government in public, commercial, and service buildings, through regulation integrating digitalization and energy efficiency mechanisms. Finally, in the third scenario, digitalization in the building sector is implemented at a fast pace in the country and is strongly induced by the government, but with broad participation of private investments and accelerated adoption of digital technologies. As a result of the slow pace of digitalization in the sector, the potential for energy efficiency stands at levels below 10% of the total of 161TWh by 2050. In the moderate digitalization scenario, the potential reaches 20 to 30% of the total 161TWh by 2050. Furthermore, in the rapid digitalization scenario, it will reach 30 to 40% of the total 161TWh by 2050.Keywords: building digitalization, energy efficiency, scenario building, prospective structural analysis, morphological analysis
Procedia PDF Downloads 11398 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators
Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy
Abstract:
Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators
Procedia PDF Downloads 11197 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics
Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh
Abstract:
Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity
Procedia PDF Downloads 14196 Metagenomic analysis of Irish cattle faecal samples using Oxford Nanopore MinION Next Generation Sequencing
Authors: Niamh Higgins, Dawn Howard
Abstract:
The Irish agri-food sector is of major importance to Ireland’s manufacturing sector and to the Irish economy through employment and the exporting of animal products worldwide. Infectious diseases and parasites have an impact on farm animal health causing profitability and productivity to be affected. For the sustainability of Irish dairy farming, there must be the highest standard of animal health. There can be a lack of information in accounting for > 1% of complete microbial diversity in an environment. There is the tendency of culture-based methods of microbial identification to overestimate the prevalence of species which grow easily on an agar surface. There is a need for new technologies to address these issues to assist with animal health. Metagenomic approaches provide information on both the whole genome and transcriptome present through DNA sequencing of total DNA from environmental samples producing high determination of functional and taxonomic information. Nanopore Next Generation Technologies have the ability to be powerful sequencing technologies. They provide high throughput, low material requirements and produce ultra-long reads, simplifying the experimental process. The aim of this study is to use a metagenomics approach to analyze dairy cattle faecal samples using the Oxford Nanopore MinION Next Generation Sequencer and to establish an in-house pipeline for metagenomic characterization of complex samples. Faecal samples will be obtained from Irish dairy farms, DNA extracted and the MinION will be used for sequencing, followed by bioinformatics analysis. Of particular interest, will be the parasite Buxtonella sulcata, which there has been little research on and which there is no research on its presence on Irish dairy farms. Preliminary results have shown the ability of the MinION to produce hundreds of reads in a relatively short time frame of eight hours. The faecal samples were obtained from 90 dairy cows on a Galway farm. The results from Oxford Nanopore ‘What’s in my pot’ (WIMP) using the Epi2me workflow, show that from a total of 926 classified reads, 87% were from the Kingdom Bacteria, 10% were from the Kingdom Eukaryota, 3% were from the Kingdom Archaea and < 1% were from the Kingdom Viruses. The most prevalent bacteria were those from the Genus Acholeplasma (71 reads), Bacteroides (35 reads), Clostridium (33 reads), Acinetobacter (20 reads). The most prevalent species present were those from the Genus Acholeplasma and included Acholeplasma laidlawii (39 reads) and Acholeplasma brassicae (26 reads). The preliminary results show the ability of the MinION for the identification of microorganisms to species level coming from a complex sample. With ongoing optimization of the pipe-line, the number of classified reads are likely to increase. Metagenomics has the potential in animal health for diagnostics of microorganisms present on farms. This would support wprevention rather than a cure approach as is outlined in the DAFMs National Farmed Animal Health Strategy 2017-2022.Keywords: animal health, buxtonella sulcata, infectious disease, irish dairy cattle, metagenomics, minION, next generation sequencing
Procedia PDF Downloads 14795 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction
Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier
Abstract:
Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing
Procedia PDF Downloads 9294 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration
Authors: S. J. Addinell, T. Richard, B. Evans
Abstract:
The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis
Procedia PDF Downloads 229