Search results for: intelligence cycle
1163 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump
Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir
Abstract:
The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.Keywords: bubble pump, drift flow model, instability, simulation
Procedia PDF Downloads 2621162 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 761161 Sustainable Transboundary Water Management: Challenges and Good Practices of Cooperation in International River Basin Districts
Authors: Aleksandra Ibragimow, Moritz Albrecht, Eerika Albrecht
Abstract:
Close international cooperation between all countries within a river basin has become one of the key aspects of sustainable cross-border water management. This is due to the fact that water does not stop at administrative or political boundaries. Therefore, the preferred mode to protect and manage transnational water bodies is close cooperation between all countries and stakeholders within the natural hydrological unit of the river basin. However, past practices have demonstrated that combining interests of different countries and stakeholders with differing political systems and management approaches to environmental issues upstream as well as downstream can be challenging. The study focuses on particular problems and challenges of water management in international river basin districts by the example of the International Oder River Basin District. The Oder River is one of the largest cross-border rivers of the Baltic Sea basin passing through Poland, Germany, and the Czech Republic. Attention is directed towards the activities and the actions that were carried out during the Districts' first management cycle of transnational river basin management (2009-2015). The results show that actions of individual countries have been focused on the National Water Management Plans while a common appointment about identified supra-regional water management problems has not been solved, and conducted actions can be considered as preliminary and merely a basis for future management. This present state raises the question whether the achievement of main objectives of Water Framework Directive (2000/60/EC) can be a realistic task.Keywords: International River Basin Districts, water management, water frameworkdirective, water management plans
Procedia PDF Downloads 3161160 Engineering of E-Learning Content Creation: Case Study for African Countries
Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola
Abstract:
This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser
Procedia PDF Downloads 1721159 The Impact of Online Advertising on Generation Y’s Purchase Decision in Malaysia
Authors: Mui Joo Tang, Eang Teng Chan
Abstract:
Advertising is commonly used to foster sales and reputation of an institution. It is at first the growth of print advertising that has increased the population and number of periodicals of newspaper and its circulation. The rise of Internet and online media has somehow blurred the role of media and advertising though the intention is still to reach out to audience and to increase sales. The relationship between advertising and audience on a product purchase through persuasion has been developing from print media to online media. From the changing media environment and audience, it is the concern of this research to study the impact of online advertising to such a relationship cycle. The content of online advertisements is much of text, multimedia, photo, audio and video. The messages of such content format may indeed bring impacts to its audience and its credibility. This study is therefore reflecting the effectiveness of online advertisement and its influences on generation Y in their purchasing behavior. This study uses Media Dependency Theory to analyze the relationship between the impact of online advertisement and media usage pattern of generation Y. Hierarchy of Effectiveness Model is used as a marketing communication model to study the effectiveness of advertising and further to determine the impact of online advertisement on generation Y in their purchasing decision making. This research uses online survey to reach out the sample of generation Y. The results have shown that online advertisements do not affect much on purchase decision making even though generation Y relies much on the media content including online advertisement for its information and believing in its credibility. There are few other external factors that may interrupt the effectiveness of online advertising. The very obvious influence of purchasing behavior is actually derived from the peers.Keywords: generation Y, purchase decision, print media, online advertising, persuasion
Procedia PDF Downloads 5271158 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study
Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.Keywords: DFT study, copper oxide cluster, MOFs, methane conversion
Procedia PDF Downloads 791157 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia
Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke
Abstract:
Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia
Procedia PDF Downloads 311156 The Basic Teachings of the Buddha
Authors: Bhaddiya Tanchangya
Abstract:
This article discusses the Four Noble Truths, the foundational teachings of Buddhism, and their significance to Buddhist philosophy. The Four Noble Truths are the Noble Truth of Suffering, the Noble Truth of the Cause of Suffering, the Noble Truth of the End of Suffering, and the Noble Truth of the Path Leading to the End of Suffering. The first truth, the Noble Truth of Suffering, explains that suffering or dukkha is an inherent part of existence, including emotional, physical, and existential forms of suffering, including the Five Aggregates, which refer to the five components that make up a sentient being's experience of existence, as they are all conditioned, interdependent, subject to the Three Characteristics of Existence: impermanence, unsatisfactoriness and emptiness. The second truth, the Noble Truth of the Cause of Suffering, states that craving or attachment to the sensory experiences of the Five Aggregates leads to suffering and identifies three types of craving: craving for sensual pleasures, craving for existence, and craving for non-existence. Through the doctrine of Dependent Origination (Paṭiccasamuppāda), the Buddha graphically shows how the entire process of suffering arises and ceases. The third truth, the Noble Truth of the End of Suffering, asserts that there is a way to end suffering and attain a state of liberation called Nibbāna that marks the end of the cycle of birth and death by removing that very craving towards the sensory experiences by cultivating the Noble Eightfold Path. The fourth truth, the Noble Truth of the Path Leading to the End of Suffering, describes the Noble Eightfold Path, a set of guidelines to develop insight and wisdom to overcome craving and attachment and attain liberation from suffering. The article emphasizes that the Four Noble Truths are universal, applicable to all people regardless of culture, background, or beliefs, and form the foundation of Buddhist philosophy and practice.Keywords: four noble truths, impermanence, suffering, not-self-ness, interconnectedness, emptiness, morality, concentration, wisdom, nirvana, happiness
Procedia PDF Downloads 881155 Experiences of Marital Relationship of Middle-Aged Couples in Hong Kong: Implications for Services Interventions
Authors: Wai M. Shum
Abstract:
There was evidence that the change of marital quality satisfaction was related to the different stages of the family life cycle. Research studies have been largely based on western contexts, which found a curvilinear U-shaped trend in changes of marital satisfaction over the course of a marriage, but little is known about the marital experiences of Hong Kong couples. Through in-depth interviews, this qualitative study explored the marital relationship of middle-aged couples in a satisfying marriage and to identify how couples maintain a satisfying relationship in the local context. Findings from this study suggested twelve themes with some showing consistency with previous literature, such as communication, companionship, trust, and fidelity. The affective aspects of empathetic understanding and perceived empathy were found to have an enormous effect on couples’ bondedness. The high level of differentiation and security served as a basis for unconditional contribution, acceptance, and adjustment to unsolvable issues such that negative emotion would not be escalated. The manifestations of intimacy and commitment in the triangular theory of love were more frequently addressed than passion in striving for marital longevity in the local context. This study challenged the curvilinear trend of marital satisfaction throughout marriage, with couples showing different pathways of marital satisfaction. The study gave insights on martial enrichment, such as facilitating couples to disclose their vulnerabilities, desire for physical intimacy, and passion in the pursuit of enduring marriage instead of an emphasis on skills training on communication and conflict resolution.Keywords: intimacy, marital relationship, marital satisfaction, middle-aged
Procedia PDF Downloads 1141154 Comparison of Virtual and Face to Face Training Program in Reducing Pain and Quality of Life of Female Students with Dysmenorrhea
Authors: Nilofar Mohammadi Ahvazi, Somayeh Ansari, Mohammad Hossein Haghighizadeh, Zahra Abbaspoor
Abstract:
Introduction: Dysmenorrhea is one of the common causes of decreased efficiency at work, education and decreased quality of life of women. The aim of this study was to compare virtual and face-to-face training programs in reducing pain and improving the quality of life of female students with primary dysmenorrhea in Ahvaz. Methods: In this quasi-experimental study, 112 female students living in the dormitories of Ahvaz University of Medical Sciences with moderate to severe primary dysmenorrhea were divided into two face-to-face and virtual groups using blocks of size 4. The educational intervention was carried out in two groups at a specific hour before the start of the first menstrual cycle. Data were collected with the help of a quality-of-life questionnaire (Sf-36), visual analog scale (VAS), and McGill questionnaire and were analyzed using descriptive and analytical tests with the help of SPSS version 25 software. Findings: The average age of the research subjects was 25.93±2.00, and the average duration of dysmenorrhea in each period was 2.49 days. There was no statistically significant difference in the quality of life of the students before the intervention, but after the educational intervention, a statistically significant difference was found between the two groups in terms of the quality of life and its dimensions (p<0.001). They were the same before the intervention, But after the intervention, the difference became significant (p<0.001). Conclusion: The virtual training method, like face-to-face training, can improve the quality of life and reduce the severity of primary dysmenorrhea pain in students. Therefore, depending on the conditions, both educational methods can be used.Keywords: primary dysmenorrhea, face-to-face training, virtual, training
Procedia PDF Downloads 421153 Project Design Deliverables Sequence (PDD)
Authors: Nahed Al-Hajeri
Abstract:
There are several reasons which lead to a delay in project completion, out of all, one main reason is the delay in deliverable processing, i.e. submission and review of documents. Most of the project cycles start with a list of deliverables but without a sequence of submission of the same, means without a direction to move, leading to overlapping of activities and more interdependencies. Hence Project Design Deliverables (PDD) is developed as a solution to Organize Transmittals (Documents/Drawings) received from contractors/consultants during different phases of an EPC (Engineering, Procurement, and Construction) projects, which gives proper direction to the stakeholders from the beginning, to reduce inter-discipline dependency, avoid overlapping of activities, provide a list of deliverables, sequence of activities, etc. PDD attempts to provide a list and sequencing of the engineering documents/drawings required during different phases of a Project which will benefit both client and Contractor in performing planned activities through timely submission and review of deliverables. This helps in ensuring improved quality and completion of Project in time. The successful implementation begins with a detailed understanding the specific challenges and requirements of the project. PDD will help to learn about vendor document submissions including general workflow, sequence and monitor the submission and review of the deliverables from the early stages of Project. This will provide an overview for the Submission of deliverables by the concerned during the projects in proper sequence. The goal of PDD is also to hold responsible and accountability of all stakeholders during complete project cycle. We believe that successful implementation of PDD with a detailed list of documents and their sequence will help organizations to achieve the project target.Keywords: EPC (Engineering, Procurement, and Construction), project design deliverables (PDD), econometrics sciences, management sciences
Procedia PDF Downloads 4001152 Improved Reuse and Storage Performances at Room Temperature of a New Environmental-Friendly Lactate Oxidase Biosensor Made by Ambient Electrospray Deposition
Authors: Antonella Cartoni, Mattea Carmen Castrovilli
Abstract:
A biosensor for lactate detection has been developed using an environmentally friendly approach. The biosensor is based on lactate oxidase (LOX) and has remarkable capabilities for reuse and storage at room temperature. The manufacturing technique employed is ambient electrospray deposition (ESD), which enables efficient and sustainable immobilization of the LOX enzyme on a cost-effective com-mercial screen-printed Prussian blue/carbon electrode (PB/C-SPE). The study demonstrates that the ESD technology allows the biosensor to be stored at ambient pressure and temperature for extended periods without affecting the enzymatic activity. The biosensor can be stored for up to 90 days without requiring specific storage conditions, and it can be reused for up to 24 measurements on both freshly prepared electrodes and electrodes that are three months old. The LOX-based biosensor exhibits a lin-ear range of lactate detection between 0.1 and 1 mM, with a limit of detection of 0.07±0.02 mM. Ad-ditionally, it does not exhibit any memory effects. The immobilization process does not involve the use of entrapment matrices or hazardous chemicals, making it environmentally sustainable and non-toxic compared to current methods. Furthermore, the application of a electrospray deposition cycle on previously used biosensors rejuvenates their performance, making them comparable to freshly made biosensors. This highlights the excellent recycling potential of the technique, eliminating the waste as-sociated with disposable devices.Keywords: green friendly, reuse, storage performance, immobilization, matrix-free, electrospray deposition, biosensor, lactate oxidase, enzyme
Procedia PDF Downloads 651151 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 2001150 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions
Authors: Reena D. Souza, Tripti Vats, Prem F. Siril
Abstract:
Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO
Procedia PDF Downloads 2771149 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 971148 Artificial Intelligent-Based Approaches for Task Offloading, Resource Allocation and Service Placement of Internet of Things Applications: State of the Art
Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib
Abstract:
In order to support the continued growth, critical latency of IoT applications, and various obstacles of traditional data centers, mobile edge computing (MEC) has emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. By adopting a MEC structure, IoT applications could be executed locally, on an edge server, different fog nodes, or distant cloud data centers. However, we are often faced with wanting to optimize conflicting criteria such as minimizing energy consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge devices and trying to keep high performance (reducing response time, increasing throughput and service availability) at the same time. Achieving one goal may affect the other, making task offloading (TO), resource allocation (RA), and service placement (SP) complex processes. It is a nontrivial multi-objective optimization problem to study the trade-off between conflicting criteria. The paper provides a survey on different TO, SP, and RA recent multi-objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications.Keywords: mobile edge computing, multi-objective optimization, artificial intelligence approaches, task offloading, resource allocation, service placement
Procedia PDF Downloads 1151147 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis
Procedia PDF Downloads 901146 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery
Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko
Abstract:
In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics
Procedia PDF Downloads 2931145 The Relationship between Operating Condition and Sludge Wasting of an Aerobic Suspension-Sequencing Batch Reactor (ASSBR) Treating Phenolic Wastewater
Authors: Ali Alattabi, Clare Harris, Rafid Alkhaddar, Ali Alzeyadi
Abstract:
Petroleum refinery wastewater (PRW) can be considered as one of the most significant source of aquatic environmental pollution. It consists of oil and grease along with many other toxic organic pollutants. In recent years, a new technique was implemented using different types of membranes and sequencing batch reactors (SBRs) to treat PRW. SBR is a fill and draw type sludge system which operates in time instead of space. Many researchers have optimised SBRs’ operating conditions to obtain maximum removal of undesired wastewater pollutants. It has gained more importance mainly because of its essential flexibility in cycle time. It can handle shock loads, requires less area for operation and easy to operate. However, bulking sludge or discharging floating or settled sludge during the draw or decant phase with some SBR configurations are still one of the problems of SBR system. The main aim of this study is to develop and innovative design for the SBR optimising the process variables to result is a more robust and efficient process. Several experimental tests will be developed to determine the removal percentages of chemical oxygen demand (COD), Phenol and nitrogen compounds from synthetic PRW. Furthermore, the dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) of the SBR system will be monitored online to ensure a good environment for the microorganisms to biodegrade the organic matter effectively.Keywords: petroleum refinery wastewater, sequencing batch reactor, hydraulic retention time, Phenol, COD, mixed liquor suspended solids (MLSS)
Procedia PDF Downloads 2601144 Relation of Black Carbon Aerosols and Atmospheric Boundary Layer Height during Wet Removal Processes over a Semi Urban Location
Authors: M. Ashok Williams, T. V. Lakshmi Kumar
Abstract:
The life cycle of Black carbon aerosols depends on their physical removal processes from the atmosphere during the precipitation events. Black Carbon (BC) mass concentration has been analysed during rainy and non-rainy days of Northeast (NE) Monsoon months of the years 2015 and 2017 over a semi-urban environment near Chennai (12.81 N, 80.03 E), located on the east coast of India. BC, measured using an Aethalometer (AE-31) has been related to the atmospheric boundary layer height (BLH) obtained from the ERA Interim Reanalysis data during rainy and non-rainy days on monthly mean basis to understand the wet removal of BC over the study location. The study reveals that boundary layer height has a profound effect on the BC concentration on rainy days and non rainy days. It is found that the BC concentration in the night time is lower on rainy days compared to non rainy days owing to wash out on rainy days and the boundary layer height remaining nearly the same on rainy and non rainy days. On the other hand, in the daytime, it is found that the BC concentration remains nearly the same on rainy and non rainy days whereas the boundary layer height is lower on rainy days compared to non rainy days. This reveals that in daytime, lower boundary layer heights compensate for the wet removal effect on BC concentration on rainy days. A quantitative relation is found between the product of BC and BLH during rainy and non-rainy days which indicates the extent of redistribution of BC during non-rainy days when compared to the rainy days. Further work on the wet removal processes of the BC is in progress considering the individual rain events and other related parameters like wind speed.Keywords: black carbon aerosols, atmospheric boundary layer, scavenging processes, tropical coastal location
Procedia PDF Downloads 1521143 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 301142 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 881141 Neo-Adjuvant B-CAT Chemotherapy in Triple Negative Breast Cancer
Authors: Muneeb Nasir, Misbah Masood, Farrukh Rashid, Abubabakar Shahid
Abstract:
Introduction: Neo-adjuvant chemotherapy is a potent option for triple negative breast cancer (TNBC) as these tumours lack a clearly defined therapeutic target. Several recent studies lend support that pathological complete remission (pCR) is associated with improved disease free survival (DFS) and overall survival (OS) and could be used as surrogate marker for DFS and OS in breast cancer patients. Methods: We have used a four-drug protocol in T3 and T4 TNBC patients either N+ or N- in the neo-adjuvant setting. The 15 patients enrolled in this study had a median age of 45 years. 12 patients went on to complete four planned cycles of B-CAT protocol. The chemotherapy regimen included inj. Bevacizumab 5mg/kg D1, inj. Adriamycin 50mg/m2 D1 and Docetaxel 65mg/m2 on D1. Inj. Cisplatin 60mg/m2 on D2. All patients received GCF support from D4 to D9 of each cycle. Results: Radiological assessment using ultrasound and PET-CT revealed a high percentage of responses. Radiological CR was documented in half of the patients (6/12) after four cycles. Remaining patients went on to receive 2 more cycles before undergoing radical surgery. pCR was documented in 7/12 patients and 3 more had a good partial response. The regimen was toxic and grade ¾ neutropenia was seen in 58% of patients. Four episodes of febrile neutropenia were reported and managed. Non-hematatological toxicities were common with mucositis, diarrhea, asthenia and neuropathy topping the list. Conclusion: B-CAT is a very active combination with very high pCR rates in TNBC. Toxicities though frequent, were manageable on outpatient basis. This protocol warrants further investigation.Keywords: B-CAT:bevacizumab, cisplatin, adriamycin, taxotere, CR: complete response, pCR: pathological complete response, TNBC: triple negative breast cancer
Procedia PDF Downloads 2601140 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4191139 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2111138 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 701137 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle
Procedia PDF Downloads 4691136 Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan
Authors: Bilal Wadood, Suleman Khan, Sajjad Ahmed
Abstract:
The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low.Keywords: cycle, deposition, microfacies, reservoir
Procedia PDF Downloads 1501135 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field
Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang
Abstract:
Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes
Procedia PDF Downloads 2901134 MANIFEST-2, a Global, Phase 3, Randomized, Double-Blind, Active-Control Study of Pelabresib (CPI-0610) and Ruxolitinib vs. Placebo and Ruxolitinib in JAK Inhibitor-Naïve Myelofibrosis Patients
Authors: Claire Harrison, Raajit K. Rampal, Vikas Gupta, Srdan Verstovsek, Moshe Talpaz, Jean-Jacques Kiladjian, Ruben Mesa, Andrew Kuykendall, Alessandro Vannucchi, Francesca Palandri, Sebastian Grosicki, Timothy Devos, Eric Jourdan, Marielle J. Wondergem, Haifa Kathrin Al-Ali, Veronika Buxhofer-Ausch, Alberto Alvarez-Larrán, Sanjay Akhani, Rafael Muñoz-Carerras, Yury Sheykin, Gozde Colak, Morgan Harris, John Mascarenhas
Abstract:
Myelofibrosis (MF) is characterized by bone marrow fibrosis, anemia, splenomegaly and constitutional symptoms. Progressive bone marrow fibrosis results from aberrant megakaryopoeisis and expression of proinflammatory cytokines, both of which are heavily influenced by bromodomain and extraterminal domain (BET)-mediated gene regulation and lead to myeloproliferation and cytopenias. Pelabresib (CPI-0610) is an oral small-molecule investigational inhibitor of BET protein bromodomains currently being developed for the treatment of patients with MF. It is designed to downregulate BET target genes and modify nuclear factor kappa B (NF-κB) signaling. MANIFEST-2 was initiated based on data from Arm 3 of the ongoing Phase 2 MANIFEST study (NCT02158858), which is evaluating the combination of pelabresib and ruxolitinib in Janus kinase inhibitor (JAKi) treatment-naïve patients with MF. Primary endpoint analyses showed splenic and symptom responses in 68% and 56% of 84 enrolled patients, respectively. MANIFEST-2 (NCT04603495) is a global, Phase 3, randomized, double-blind, active-control study of pelabresib and ruxolitinib versus placebo and ruxolitinib in JAKi treatment-naïve patients with primary MF, post-polycythemia vera MF or post-essential thrombocythemia MF. The aim of this study is to evaluate the efficacy and safety of pelabresib in combination with ruxolitinib. Here we report updates from a recent protocol amendment. The MANIFEST-2 study schema is shown in Figure 1. Key eligibility criteria include a Dynamic International Prognostic Scoring System (DIPSS) score of Intermediate-1 or higher, platelet count ≥100 × 10^9/L, spleen volume ≥450 cc by computerized tomography or magnetic resonance imaging, ≥2 symptoms with an average score ≥3 or a Total Symptom Score (TSS) of ≥10 using the Myelofibrosis Symptom Assessment Form v4.0, peripheral blast count <5% and Eastern Cooperative Oncology Group performance status ≤2. Patient randomization will be stratified by DIPSS risk category (Intermediate-1 vs Intermediate-2 vs High), platelet count (>200 × 10^9/L vs 100–200 × 10^9/L) and spleen volume (≥1800 cm^3 vs <1800 cm^3). Double-blind treatment (pelabresib or matching placebo) will be administered once daily for 14 consecutive days, followed by a 7 day break, which is considered one cycle of treatment. Ruxolitinib will be administered twice daily for all 21 days of the cycle. The primary endpoint is SVR35 response (≥35% reduction in spleen volume from baseline) at Week 24, and the key secondary endpoint is TSS50 response (≥50% reduction in TSS from baseline) at Week 24. Other secondary endpoints include safety, pharmacokinetics, changes in bone marrow fibrosis, duration of SVR35 response, duration of TSS50 response, progression-free survival, overall survival, conversion from transfusion dependence to independence and rate of red blood cell transfusion for the first 24 weeks. Study recruitment is ongoing; 400 patients (200 per arm) from North America, Europe, Asia and Australia will be enrolled. The study opened for enrollment in November 2020. MANIFEST-2 was initiated based on data from the ongoing Phase 2 MANIFEST study with the aim of assessing the efficacy and safety of pelabresib and ruxolitinib in JAKi treatment-naïve patients with MF. MANIFEST-2 is currently open for enrollment.Keywords: CPI-0610, JAKi treatment-naïve, MANIFEST-2, myelofibrosis, pelabresib
Procedia PDF Downloads 201