Search results for: descriptive research
2141 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring
Authors: Younghoon Kim, Seoung Bum Kim
Abstract:
One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.Keywords: control chart, mixed integer programming, one-class classification, support vector data description
Procedia PDF Downloads 1762140 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach
Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu
Abstract:
Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management
Procedia PDF Downloads 462139 Insectivorous Medicinal Plant Drosera Ecologyand its Biodiversity Conservation through Tissue Culture and Sustainable Biotechnology
Authors: Sushil Pradhan
Abstract:
Biotechnology contributes to sustainable development in several ways such as biofertilizer production, biopesticide production and management of environmental pollution, tissue culture and biodiversity conservation in vitro, in vivo and in situ, Insectivorous medicinal plant Drosera burmannii Vahl belongs to the Family-Droseraceae under Order-Caryophyllales, Dicotyledoneae, Angiospermeae which has 31 (thirty one) living genera and 194 species besides 7 (seven) extinct (fossil) genera. Locally it is known as “Patkanduri” in Odia. Its Hindi name is “Mukhajali” and its English name is “Sundew”. The earliest species of Drosera was first reported in 1753 by Carolous Linnaeus called Drosera indica L (Indian Sundew). The latest species of Drosera reported by Fleisch A, Robinson, AS, McPherson S, Heinrich V, Gironella E and Madulida D.A. (2011) is Drosera ultramafica from Malaysia. More than 50 % species of Drosera have been reported from Australia and next to Australia is South Africa. India harbours only 3 species such as D. indica L, Drosera burmannii Vahl and D. peltata L. From our Odisha only D. burmannii Vahl is being reported for the first time from the district of Subarnapur near Sonepur (Arjunpur Reserve Forest Area). Drosera plant is autotrophic but to supplement its Nitrogen (N2) requirement it adopts heterotrophic mode of nutrition (insectivorous/carnivorous) as well. The colour of plant in mostly red and about 20-30cm in height with beautiful pink or white pentamerous flowers. Plants grow luxuriantly during November to February in shady and moist places near small water bodies of running water stream. Medicinally it is a popular herb in the locality for the treatment of cold and cough in children in rainy season by the local Doctors (Kabiraj and Baidya). In the present field investigation an attempt has been made to understand the unique reproductive phase and life cycle of the plant thereby planning for its conservation and propagation through various techniques of tissue culture and biotechnology. More importantly besides morphological and anatomical studies, cytological investigation is being carried out to find out the number of chromosomes in the cell and its genomics as there is no such report as yet for Drosera burmannii Vahl. The ecological significance and biodiversity conservation of Drosera with special reference to energy, environmental and chemical engineering has been discussed in the research paper presentation.Keywords: insectivorous, medicinal, drosera, biotechnology, chromosome, genome
Procedia PDF Downloads 3872138 A Study Investigating Word Association Behaviour in People with Acquired Language and Communication Disorders
Authors: Angela Maria Fenu
Abstract:
The aim of this study was to better characterize the nature of word association responses in people with aphasia. The participants selected for the experimental group were 4 individuals with mild Broca’s aphasia. The control group consisted of 51 cognitively intact age- and gender-matched individuals. The participants were asked to perform a word association task in which they had to say the first word they thought of when hearing each cue. The cue words (n= 16) were the translation in Italian of the set of English cue words of a published study. The participants from the experimental group were administered the word association test every two weeks for a period of two months when they received speech-language therapy A combination of analytical approaches to measure the data was used. To analyse different patterns of word association responses in both groups, the nature of the relationship between the cue and the response was examined: responses were divided into five categories of association. To investigate the similarity between aphasic and non-aphasic subjects, the stereotypy of responses was examined.While certain stimulus words (nouns, adjectives) elicited responses from Broca’s aphasics that tended to resemble those made by non-aphasic subjects; others (adverbs, verbs) showed the tendency to elicit responses different from the ones given by normal subjects. This suggests that some mechanisms underlying certain types of associations are degraded in aphasics individuals, while others display little evidence of disruption. The high number of paradigmatic associations given in response to a noun or an adjective might imply that the mechanisms, largely semantic, underlying paradigmatic associations are relatively preserved in Broca’s aphasia, but it might also mean that some words are more easily processed depending on their grammatical class (nouns, adjectives). The most significant variation was noticed when the grammatical class of the cue word was an adverb. Unlike the normal individuals, the experimental subjects gave the most idiosyncratic associations, which are often produced when the attempt to give a paradigmatic response fails. In turn, the failure to retrieve paradigmatic responses when the cue is an adverb might suggest that Broca’s aphasics are more sensitive to this grammatical class.The findings from this study suggest that, from research on word associations in people with aphasia, important data can arise concerning the specific lexical retrieval impairments that characterize the different types of aphasia and the various treatments that might positively influence the kinds of word association responses affected by language disruption.Keywords: aphasia therapy, clinical linguistics, word-association behaviour, mental lexicon
Procedia PDF Downloads 932137 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 652136 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool Towards Circular Economy
Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang
Abstract:
Glass is widely used in everyday life, from glass bottles for beverages to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting, and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use, which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure-focused cities. It’s therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with low carbon output. This project aims to assess the feasibility of industrial symbiosis and upgrading the framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industrial strategy since it provides an opportunity to target economic recovery for post-COVID by industry symbiosis and up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England and as a good practice to be further recommended to other areas of the UK. First, a critical literature review of glass waste strategies has been conducted in the UK and worldwide industrial symbiosis practices. Second, mapping, data collection, and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding of the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of the glass bottle industry, its business model, supply chain, and material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities 1) focus on upgrading processes towards re-use rather than single-use and recycling and 2) focus on ‘smart’ re-use and recycling, leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.Keywords: glass bottles, industry symbiosis, smart re-use, waste upgrading
Procedia PDF Downloads 1112135 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data
Authors: Jaehyung An, Sungjoo Lee
Abstract:
Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.Keywords: NLP, patent analysis, SAO, semantic-analysis
Procedia PDF Downloads 2632134 The Impact of the Variation of Sky View Factor on Landscape Degree of Enclosure of Urban Blue and Green Belt
Authors: Yi-Chun Huang, Kuan-Yun Chen, Chuang-Hung Lin
Abstract:
Urban Green Belt and Blue is a part of the city landscape, it is an important constituent element of the urban environment and appearance. The Hsinchu East Gate Moat is situated in the center of the city, which not only has a wealth of historical and cultural resources, but also combines the Green Belt and the Blue Belt qualities at the same time. The Moat runs more than a thousand meters through the vital Green Belt and the Blue Belt in downtown, and each section is presented in different qualities of moat from south to north. The water area and the green belt of surroundings are presented linear and banded spread. The water body and the rich diverse river banks form an urban green belt of rich layers. The watercourse with green belt design lets users have connections with blue belts in different ways; therefore, the integration of Hsinchu East Gate and moat have become one of the unique urban landscapes in Taiwan. The study is based on the fact-finding case of Hsinchu East Gate Moat where situated in northern Taiwan, to research the impact between the SVF variation of the city and spatial sequence of Urban Green Belt and Blue landscape and visual analysis by constituent cross-section, and then comparing the influence of different leaf area index – the variable ecological factors to the degree of enclosure. We proceed to survey the landscape design of open space, to measure existing structural features of the plant canopy which contain the height of plants and branches, the crown diameter, breast-height diameter through access to diagram of Geographic Information Systems (GIS) and on-the-spot actual measurement. The north and south districts of blue green belt areas are divided 20 meters into a unit from East Gate Roundabout as the epicenter, and to set up a survey points to measure the SVF above the survey points; then we proceed to quantitative analysis from the data to calculate open landscape degree of enclosure. The results can be reference for the composition of future river landscape and the practical operation for dynamic space planning of blue and green belt landscape.Keywords: sky view factor, degree of enclosure, spatial sequence, leaf area indices
Procedia PDF Downloads 5582133 The Morphogenesis of an Informal Settlement: An Examination of Street Networks through the Informal Development Stages Framework
Authors: Judith Margaret Tymon
Abstract:
As cities struggle to incorporate informal settlements into the fabric of urban areas, the focus has often been on the provision of housing. This study explores the underlying structure of street networks, with the goal of understanding the morphogenesis of informal settlements through the lens of the access network. As the stages of development progress from infill to consolidation and eventually, to a planned in-situ settlement, the access networks retain the form of the core segments; however, a majority of street patterns are adapted to a grid design to support infrastructure in the final upgraded phase. A case study is presented to examine the street network in the informal settlement of Gobabis Namibia as it progresses from its initial stages to a planned, in-situ, and permanently upgraded development. The Informal Development Stages framework of foundation, infill, and consolidation, as developed by Dr. Jota Samper, is utilized to examine the evolution of street networks. Data is gathered from historical Google Earth satellite images for the time period between 2003 and 2022. The results demonstrate that during the foundation through infill stages, incremental changes follow similar patterns, with pathways extended, lengthened, and densified as housing is created and the settlement grows. In the final stage of consolidation, the resulting street layout is transformed to support the installation of infrastructure; however, some elements of the original street patterns remain. The core pathways remain intact to accommodate the installation of infrastructure and the creation of housing plots, defining the shape of the settlement and providing the basis of the urban form. The adaptations, growth, and consolidation of the street network are critical to the eventual formation of the spatial layout of the settlement. This study will include a comparative analysis of findings with those of recent research performed by Kamalipour, Dovey, and others regarding incremental urbanism within informal settlements. Further comparisons will also include studies of street networks of well-established urban centers that have shown links between the morphogenesis of access networks and the eventual spatial layout of the city. The findings of the study can be used to guide and inform strategies for in-situ upgrading and can contribute to the sustainable development of informal settlements.Keywords: Gobabis Namibia, incremental urbanism, informal development stages, informal settlements, street networks
Procedia PDF Downloads 682132 Ribotaxa: Combined Approaches for Taxonomic Resolution Down to the Species Level from Metagenomics Data Revealing Novelties
Authors: Oshma Chakoory, Sophie Comtet-Marre, Pierre Peyret
Abstract:
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomic data and estimation of taxa relative abundance. Small subunit rRNA genes are nowadays a gold standard for the phylogenetic resolution of complex microbial communities, although the power of this marker comes down to its use as full-length. We benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then built a pipeline called RiboTaxa to generate a highly sensitive and specific metataxonomic approach. Using metagenomics data, RiboTaxa gave the best results compared to other tools (Kraken2, Centrifuge (1), METAXA2 (2), PhyloFlash (3)) with precise taxonomic identification and relative abundance description, giving no false positive detection. Using real datasets from various environments (ocean, soil, human gut) and from different approaches (metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not seen by current bioinformatics analysis opening new biological perspectives in human and environmental health. In a study focused on corals’ health involving 20 metagenomic samples (4), an affiliation of prokaryotes was limited to the family level with Endozoicomonadaceae characterising healthy octocoral tissue. RiboTaxa highlighted 2 species of uncultured Endozoicomonas which were dominant in the healthy tissue. Both species belonged to a genus not yet described, opening new research perspectives on corals’ health. Applied to metagenomics data from a study on human gut and extreme longevity (5), RiboTaxa detected the presence of an uncultured archaeon in semi-supercentenarians (aged 105 to 109 years) highlighting an archaeal genus, not yet described, and 3 uncultured species belonging to the Enorma genus that could be species of interest participating in the longevity process. RiboTaxa is user-friendly, rapid, allowing microbiota structure description from any environment and the results can be easily interpreted. This software is freely available at https://github.com/oschakoory/RiboTaxa under the GNU Affero General Public License 3.0.Keywords: metagenomics profiling, microbial diversity, SSU rRNA genes, full-length phylogenetic marker
Procedia PDF Downloads 1262131 Generalized Up-downlink Transmission using Black-White Hole Entanglement Generated by Two-level System Circuit
Authors: Muhammad Arif Jalil, Xaythavay Luangvilay, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin
Abstract:
Black and white holes form the entangled pair⟨BH│WH⟩, where a white hole occurs when the particle moves at the same speed as light. The entangled black-white hole pair is at the center with the radian between the gap. When the speed of particle motion is slower than light, the black hole is gravitational (positive gravity), where the white hole is smaller than the black hole. On the downstream side, the entangled pair appears to have a black hole outside the gap increases until the white holes disappear, which is the emptiness paradox. On the upstream side, when moving faster than light, white holes form times tunnels, with black holes becoming smaller. It will continue to move faster and further when the black hole disappears and becomes a wormhole (Singularity) that is only a white hole in emptiness (Emptiness). This research studies use of black and white holes generated by a two-level circuit for communication transmission carriers, in which high ability and capacity of data transmission can be obtained. The black and white hole pair can be generated by the two-level system circuit when the speech of a particle on the circuit is equal to the speed of light. The black hole forms when the particle speed has increased from slower to equal to the light speed, while the white hole is established when the particle comes down faster than light. They are bound by the entangled pair, signal and idler, ⟨Signal│Idler⟩, and the virtual ones for the white hole, which has an angular displacement of half of π radian. A two-level system is made from an electronic circuit to create black and white holes bound by the entangled bits that are immune or cloning-free from thieves. Start by creating a wave-particle behavior when its speed is equal to light black hole is in the middle of the entangled pair, which is the two bit gate. The required information can be input into the system and wrapped by the black hole carrier. A timeline (Tunnel) occurs when the wave-particle speed is faster than light, from which the entangle pair is collapsed. The transmitted information is safely in the time tunnel. The required time and space can be modulated via the input for the downlink operation. The downlink is established when the particle speed is given by a frequency(energy) form is down and entered into the entangled gap, where this time the white hole is established. The information with the required destination is wrapped by the white hole and retrieved by the clients at the destination. The black and white holes are disappeared, and the information can be recovered and used.Keywords: cloning free, time machine, teleportation, two-level system
Procedia PDF Downloads 792130 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection
Procedia PDF Downloads 672129 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1242128 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 592127 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 2422126 Influence of CO₂ on the Curing of Permeable Concrete
Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez
Abstract:
Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy
Procedia PDF Downloads 692125 Sustainable Concepts Applied in the Pre-Columbian Andean Architecture in Southern Ecuador
Authors: Diego Espinoza-Piedra, David Duran
Abstract:
All architectural and land use processes are framed in a cultural, social and geographical context. The present study analyzes the Andean culture before the Spanish conquest in southern Ecuador, in the province of Azuay. This area has been habited for more than 10.000 years. The Canari and the Inca cultures occupied Azuay close to the arrival of the Spanish conquers. The Inca culture was settled in the Andes Mountains. The Canari culture was established in the south of Ecuador, on the actual provinces of Azuay and Canar. In contrast with history and archeology, to the best of our knowledge, their architecture has not yet been studied in this area because of the lack of architectural structures. Consequently, the present research reviewed the land use and culture for architectonic interpretations. The two main architectural objects in these cultures were dwellings and public buildings. In the first case, housing was conceived as temporary. It had to stand as long as its inhabitants lived. Therefore, houses were built when a couple got married. The whole community started the construction through the so-called ‘minga’ or collective work. The construction materials were tree branches, reeds, agave, ground, and straw. So that when their owners aged and then died, this house was easily disarmed and overthrown. Their materials become part of the land for agriculture. Finally, this cycle was repeated indefinitely. In the second case, the buildings, which we can call public, have presented erroneous interpretations. They have been defined as temples. But according to our conclusions, they were places for temporary accommodation, storage of objects and products, and in some special cases, even astronomical observatories. These public buildings were settled along the important road system called ‘Capac-Nam’, currently declared by UNESCO as World Cultural Heritage. The buildings had different scales at regular distances. Also, they were established in special or strategic places, which constituted a system of observatories. These observatories allowed to determine the cycles or calendars (solar or lunar) necessary for the agricultural production, as well as other natural phenomena. Most of the current minimal existence of physical structures in quantity and state of conservation is at the level of foundations or pieces of walls. Therefore, this study was realized after the identification of the history and culture of the inhabitants of this Andean region.Keywords: Andean, pre-Colombian architecture, Southern Ecuador, sustainable
Procedia PDF Downloads 1312124 Winkler Springs for Embedded Beams Subjected to S-Waves
Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto
Abstract:
Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction
Procedia PDF Downloads 662123 Determination of Identification and Antibiotic Resistance Rates of Serratia marcescens and Providencia Spp. from Various Clinical Specimens by Using Both the Conventional and Automated (VITEK2) Methods
Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz
Abstract:
Objective: Serratia species are identified as aerobic, motile Gram negative rods. The species Serratia marcescens (S. marcescens) causes both opportunistic and nosocomial infections. The genus Providencia is Gram-negative bacilli and includes urease-producing that is responsible for a wide range of human infections. Although most Providencia infections involve the urinary tract, they are also associated with gastroenteritis, wound infections, and bacteremia. The aim of this study was evaluate the antimicrobial resistance rates of S. marcescens and Providencia spp. strains which had been isolated from various clinical materials obtained from different patients who belongs to intensive care units (ICU) and inpatient clinics. Methods: A total of 35 S. marcescens and Providencia spp. strains isolated from various clinical samples admitted to Medical Microbiology Laboratory, ANS Research and Practice Hospital, Afyon Kocatepe University between October 2013 and September 2015 were included in the study. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bio-Merieux, Marcy l’etoile, France) was used additionally. Antibacterial resistance tests were performed by using Kirby Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: The distribution of clinical samples were as follows: upper and lower respiratory tract samples 26, 74.2 % wound specimen 6, 17.1 % blood cultures 3, 8.5%. Of the 35 S. marcescens and Providencia spp. strains; 28, 80% were isolated from clinical samples sent from ICU. The resistance rates of S. marcescens strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 8.5 %, 22.8 %, 11.4 %, 2.8 %, 17.1 %, 40 %, 28.5 % and 5.7 % respectively. Resistance rates of Providencia spp. strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 10.2 %, 33,3 %, 18.7 %, 8.7 %, 13.2 %, 38.6 %, 26.7%, and 11.8 % respectively. Conclusion: S. marcescens is usually resistant to ampicillin, amoxicillin, amoxicillin/clavulanate, ampicillin/sulbactam, cefuroxime, cephamycins, nitrofurantoin, and colistin. The most effective antibiotic on the total of S. marcescens strains was found to be gentamicin 2.8 %, of the totally tested strains the highest resistance rate found against to ceftazidime 40 %. The lowest and highest resistance rates were found against gentamiycin and ceftazidime with the rates of 8.7 % and 38.6 % for Providencia spp.Keywords: Serratia marcescens, Providencia spp., antibiotic resistance, intensive care unit
Procedia PDF Downloads 2482122 Association between a Forward Lag of Historical Total Accumulated Gasoline Lead Emissions and Contemporary Autism Prevalence Trends in California, USA
Authors: Mark A. S. Laidlaw, Howard W. Mielke
Abstract:
In California between the late 1920’s and 1986 the lead concentrations in urban soils and dust climbed rapidly following the deposition of greater than 387,000 tonnes of lead emitted from gasoline. Previous research indicates that when children are lead exposed around 90% of the lead is retained in their bones and teeth due to the substitution of lead for calcium. Lead in children’s bones has been shown to accumulate over time and is highest in inner-city urban areas, lower in suburban areas and lowest in rural areas. It is also known that women’s bones demineralize during pregnancy due to the foetus's high demand for calcium. Lead accumulates in women’s bones during childhood and the accumulated lead is subsequently released during pregnancy – a lagged response. This results in calcium plus lead to enter the blood stream and cross the placenta to expose the foetus with lead. In 1970 in the United States, the average age of a first‐time mother was about 21. In 2008, the average age was 25.1. In this study, it is demonstrated that in California there is a forward lagged relationship between the accumulated emissions of lead from vehicle fuel additives and later autism prevalence trends between the 1990’s and current time period. Regression analysis between a 24 year forward lag of accumulated lead emissions and autism prevalence trends in California are associated strongly (R2=0.95, p=0.00000000127). It is hypothesized that autism in genetically susceptible children may stem from vehicle fuel lead emission exposures of their mothers during childhood and that the release of stored lead during subsequent pregnancy resulted in lead exposure of foetuses during a critical developmental period. It is furthermore hypothesized that the 24 years forward lag between lead exposures has occurred because that is time period is the average length for women to enter childbearing age. To test the hypothesis that lead in mothers bones is associated with autism, it is hypothesized that retrospective case-control studies would show an association between the lead in mother’s bones and autism. Furthermore, it is hypothesized that the forward lagged relationship between accumulated historical vehicle fuel lead emissions (or air lead concentrations) and autism prevalence trends will be similar in cities at the national and international scale. If further epidemiological studies indicate a strong relationship between accumulated vehicle fuel lead emissions (or accumulated air lead concentrations) and lead in mother’s bones and autism rates, then urban areas may require extensive soil intervention to prevent the development of autism in children.Keywords: autism, bones, lead, gasoline, petrol, prevalence
Procedia PDF Downloads 2972121 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites
Authors: S. Z. A. Zaidi, A. Crosky
Abstract:
Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding. Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional
Procedia PDF Downloads 2922120 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 1812119 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 802118 Ethiopia as a Tourist Destination: An Exploration of Italian Tourists’ Market Demand
Authors: Frezer Okubay Weldegebriel
Abstract:
The tourism sector in Ethiopia plays a significant role in the national economy. The government is granting its pledge and readiness to develop this sector through various initiatives since to eradicate poverty and encourage economic development of the country is one of the Millennium Development plans. The tourism sector has been identified as one of the priority economic sectors by many countries, and the Government of Ethiopia has planned to make Ethiopia among the top five African destinations by 2020. Nevertheless, the international tourism demand for Ethiopia currently lags behind other African countries such as South Africa, Egypt, Morocco, Tanzania, and Kenya. Meanwhile, the number of international tourists’ arrival in Ethiopia is recently increasing even if it cannot be competitive with other African countries. Therefore, to offer demand-driven tourism products, the Ethiopian government, Tourism planners, Tour & Travel operators need to understand the important factors, which affect international tourists’ decision to visit Ethiopian destinations. This study was intended to analyze Italian Tourists Demand towards Ethiopian destination. The researcher aimed to identify the demand for Italian tourists’ preference to Ethiopian destinations comparing to the top East African countries. This study uses both qualitative and quantitative research methodology, and the data is manipulating through primary data collection method using questionnaires, interviews, and secondary data by reviewing books, journals, magazines, past researches, and websites. An active and potential Italian tourist cohort, five well-functioning tour operators based in Ethiopia for Italian tourists and professionals from Ethiopian Ministry of Tourism and Culture participated. Based on the analysis of the data collected through the questionnaire, interviews, and reviews of different materials, the study disclosed that the majority of Italian tourists have a high demand on Ethiopian Tourist destination. Historical and cultural interest, safety and security, the hospitality of the people and affordable accommodation coast are the main reason for them. However, some Italian tourists prefer to visit Kenya, Tanzania, and Uganda due to the fact that they are fascinated by adventure, safari and beaches, while Ethiopia cannot provide these attractions. Most Italian tourists have little information and practical experiences on Ethiopian tourism possibilities via a tour and travel companies. Moreover, the insufficient marketing campaign and promotion by Ethiopian Government and Ministry of Tourism could also contribute to the failure of Ethiopian tourism.Keywords: The demand of Italian tourists, Ethiopia economy, Ethiopia tourism destination, promoting Ethiopia tourism
Procedia PDF Downloads 2132117 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer
Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi
Abstract:
Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales
Procedia PDF Downloads 1252116 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber
Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo
Abstract:
Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties
Procedia PDF Downloads 3572115 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 452114 Emotion Expression of the Leader and Collective Efficacy: Pride and Guilt
Authors: Hsiu-Tsu Cho
Abstract:
Collective efficacy refers to a group’s sense of its capacity to complete a task successfully or to reach objectives. Little effort has been expended on investigating the relationship between the emotion expression of a leader and collective efficacy. In this study, we examined the impact of the different emotions and emotion expression of a group leader on collective efficacy and explored whether the emotion–expressive effects differed under conditions of negative and positive emotions. A total of 240 undergraduate and graduate students recruited using Facebook and posters at a university participated in this research. The participants were separated randomly into 80 groups of four persons consisting of three participants and a confederate. They were randomly assigned to one of five conditions in a 2 (pride vs. guilt) × 2 (emotion expression of group leader vs. no emotion expression of group leader) factorial design and a control condition. Each four-person group was instructed to get the reward in a group competition of solving the five-disk Tower of Hanoi puzzle and making decisions on an investment case. We surveyed the participants by employing the emotional measure revised from previous researchers and collective efficacy questionnaire on a 5-point scale. To induce an emotion of pride (or guilt), the experimenter announced whether the group performance was good enough to have a chance of getting the reward (ranking the top or bottom 20% among all groups) after group task. The leader (confederate) could either express or not express a feeling of pride (or guilt) following the instruction according to the assigned condition. To check manipulation of emotion, we added a control condition under which the experimenter revealed no results regarding group performance in maintaining a neutral emotion. One-way ANOVAs and post hoc pairwise comparisons among the three emotion conditions (pride, guilt, and control condition) involved assigning pride and guilt scores (pride: F(1,75) = 32.41, p < .001; guilt: F(1,75) = 6.75, p < .05). The results indicated that manipulations of emotion were successful. A two-way between-measures ANOVA was conducted to examine the predictions of the main effects of emotion types and emotion expression as well as the interaction effect of these two variables on collective efficacy. The experimental findings suggest that pride did not affect collective efficacy (F(1,60) = 1.90, ns.) more than guilt did and that the group leader did not motivate collective efficacy regardless of whether he or she expressed emotion (F(1,60) = .89, ns.). However, the interaction effect of emotion types and emotion expression was statistically significant (F(1,60) = 4.27, p < .05, ω2 = .066); the effects accounted for 6.6% of the variance. Additional results revealed that, under the pride condition, the leader enhanced group efficacy when expressing emotion, whereas, under the guilt condition, an expression of emotion could reduce collective efficacy. Overall, these findings challenge the assumption that the effect of expression emotion are the same on all emotions and suggest that a leader should be cautious when expressing negative emotions toward a group to avoid reducing group effectiveness.Keywords: collective efficacy, group leader, emotion expression, pride, guilty
Procedia PDF Downloads 3332113 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites
Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova
Abstract:
The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.Keywords: bioceramics, composites, functionalization, surface development
Procedia PDF Downloads 1222112 The Evolution Theory in Perspective of Cyber Criminality on the Basis of Technological Components: Analyzing the Role of the Theory of Emerging Technologies in Facilitating Transnational Organized Crime
Authors: Tanmoy Basu
Abstract:
The confluence of evolutionary paradigms and technological advancements offers an unprecedented vantage point for scrutinizing the mechanisms underpinning cyber criminality. This research delineates the instrumental role of emergent technologies in exacerbating transnational organized crime, conceptualized through the prism of evolutionary theory. By interrogating the scientific proposition of how adaptive strategies inherent to evolutionary principles converge with the acceleration of technological innovation, this study elucidates the profound metamorphosis in criminal methodologies within the digital milieu. The discourse commences with an exhaustive exegesis of evolutionary theory, emphasizing constructs such as adaptation, variation, and selective pressures transposed into the cybernetic domain. It postulates a cogent hypothesis: technological evolution, analogous to biological evolution, engenders adaptive capacities among cybercriminal entities, enabling them to proliferate and optimize operations across extraterritorial frontiers. Employing a multifaceted methodological framework, the study integrates longitudinal case analyses of cybercriminal enterprises, statistical interrogation of transnational cyber-offenses, and prognostic evaluations of technological trajectories. This approach elucidates the symbiotic relationship between technological sophistication and the operational stratagems of cyber criminals. Empirical findings unveil a deterministic nexus between technological innovation and the escalating intricacies of cybercrime. For instance, the incursion of blockchain technology has redefined the paradigms of financial obfuscation, while artificial intelligence has fortified the precision of nefarious activities such as credential harvesting and algorithmic fraud. The interpretative synthesis corroborates the hypothesis, asserting that evolutionary imperatives -adaptation and survival- are emblematic in the digital stratagems of cyber malefactors. The study culminates in advocating for a consolidated global architecture that harmonizes technological ingenuity with stringent cybersecurity frameworks to counteract the proliferation of transnational cybercriminal networks.Keywords: artificial intelligence, cyber criminality, cybersecurity framework, cogent hypothesis, evolutionary theory, evolutionary imperatives, financial obfuscation, interpretative synthesis, statistical interrogation, transitional cybercriminal network, technological ingenuity
Procedia PDF Downloads 4