Search results for: pathway estimation
231 Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area
Authors: Michelle Eliane Hernández-García, Angélica Lozano
Abstract:
The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone.Keywords: freight transport, industrial zone, traffic accidents, traffic mix, trucks
Procedia PDF Downloads 130230 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 121229 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin
Authors: Emma R. Arakelova, Stepan G. Grigoryan, Flora G. Arsenyan, Nelli S. Babayan, Ruzanna M. Grigoryan, Natalia K. Sarkisyan
Abstract:
Novel nanosize zinc oxide composites of doxorubicin obtained by deposition of 180 nm thick zinc oxide film on the drug surface using DC-magnetron sputtering of a zinc target in the form of gels (PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO) were studied for drug delivery applications. The cancer specificity was revealed both in in vitro and in vivo models. The cytotoxicity of the test compounds was analyzed against human cancer (HeLa) and normal (MRC5) cell lines using MTT colorimetric cell viability assay. IC50 values were determined and compared to reveal the cancer specificity of the test samples. The mechanistic study of the most active compound was investigated using Flow cytometry analyzing of the DNA content after PI (propidium iodide) staining. Data were analyzed with Tree Star FlowJo software using cell cycle analysis Dean-Jett-Fox module. The in vivo anticancer activity estimation experiments were carried out on mice with inoculated ascitic Ehrlich’s carcinoma at intraperitoneal introduction of doxorubicin and its zinc oxide compositions. It was shown that the nanosize zinc oxide film deposition on the drug surface leads to the selective anticancer activity of composites at the cellular level with the range of selectivity index (SI) from 4 (Starch+NaCMC+Dox+ZnO) to 200 (PEO(gel)+Dox+ZnO) which is higher than that of free Dox (SI = 56). The significant increase in vivo antitumor activity (by a factor of 2-2.5) and decrease of general toxicity of zinc oxide compositions of doxorubicin in the form of the above mentioned gels compared to free doxorubicin were shown on the model of inoculated Ehrlich's ascitic carcinoma. Mechanistic studies of anticancer activity revealed the cytostatic effect based on the high level of DNA biosynthesis inhibition at considerable low concentrations of zinc oxide compositions of doxorubicin. The results of studies in vitro and in vivo behavior of PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO composites confirm the high potential of the nanosize zinc oxide composites as a vector delivery system for future application in cancer chemotherapy.Keywords: anticancer activity, cancer specificity, doxorubicin, zinc oxide
Procedia PDF Downloads 411228 Deciphering Tumor Stroma Interactions in Retinoblastoma
Authors: Rajeswari Raguraman, Sowmya Parameswaran, Krishnakumar Subramanian, Jagat Kanwar, Rupinder Kanwar
Abstract:
Background: Tumor microenvironment has been implicated in several cancers to regulate cell growth, invasion and metastasis culminating in outcome of therapy. Tumor stroma consists of multiple cell types that are in constant cross-talk with the tumor cells to favour a pro-tumorigenic environment. Not much is known about the existence of tumor microenvironment in the pediatric intraocular malignancy, Retinoblastoma (RB). In the present study, we aim to understand the multiple stromal cellular subtypes and tumor stromal interactions expressed in RB tumors. Materials and Methods: Immunohistochemistry for stromal cell markers CD31, CD68, alpha-smooth muscle (α-SMA), vimentin and glial fibrillary acidic protein (GFAP) was performed on formalin fixed paraffin embedded tissues sections of RB (n=12). The differential expression of stromal target molecules; fibroblast activation protein (FAP), tenascin-C (TNC), osteopontin (SPP1), bone marrow stromal antigen 2 (BST2), stromal derived factor 2 and 4 (SDF2 and SDF4) in primary RB tumors (n=20) and normal retina (n=5) was studied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. The differential expression was correlated with the histopathological features of RB. The interaction between RB cell lines (Weri-Rb-1, NCC-RbC-51) and Bone marrow stromal cells (BMSC) was also studied using direct co-culture and indirect co-culture methods. The functional effect of the co-culture methods on the RB cells was evaluated by invasion and proliferation assays. Global gene expression was studied by using Affymetrix 3’ IVT microarray. Pathway prediction was performed using KEGG and the key molecules were validated using qRT-PCR. Results: The immunohistochemistry revealed the presence of several stromal cell types such as endothelial cells (CD31+;Vim+/-); macrophages (CD68+;Vim+/-); Fibroblasts (Vim+; CD31-;CD68- );myofibroblasts (α-SMA+/ Vim+) and invading retinal astrocytes/ differentiated retinal glia (GFAP+; Vim+). A characteristic distribution of these stromal cell types was observed in the tumor microenvironment, with endothelial cells predominantly seen in blood vessels and macrophages near actively proliferating tumor or necrotic areas. Retinal astrocytes and glia were predominant near the optic nerve regions in invasive tumors with sparse distribution in tumor foci. Fibroblasts were widely distributed with rare evidence of myofibroblasts in the tumor. Both gene and protein expression revealed statistically significant (P<0.05) up-regulation of FAP, TNC and BST2 in primary RB tumors compared to the normal retina. Co-culture of BMSC with RB cells promoted invasion and proliferation of RB cells in direct and indirect contact methods respectively. Direct co-culture of RB cell lines with BMSC resulted in gene expression changes in ECM-receptor interaction, focal adhesion, IL-8 and TGF-β signaling pathways associated with cancer. In contrast, various metabolic pathways such a glucose, fructose and amino acid metabolism were significantly altered under the indirect co-culture condition. Conclusion: The study suggests that the close interaction between RB cells and the stroma might be involved in RB tumor invasion and progression which is likely to be mediated by ECM-receptor interactions and secretory factors. Targeting the tumor stroma would be an attractive option for redesigning treatment strategies for RB.Keywords: gene expression profiles, retinoblastoma, stromal cells, tumor microenvironment
Procedia PDF Downloads 385227 Intensity of Dyspnea and Anxiety in Seniors in the Terminal Phase of the Disease
Authors: Mariola Głowacka
Abstract:
Aim: The aim of this study was to present the assessment of dyspnea and anxiety in seniors staying in the hospice in the context of the nurse's tasks. Materials and methods: The presented research was carried out at the "Hospicjum Płockie" Association of St. Urszula Ledóchowska in Płock, in a stationary ward, for adults. The research group consisted of 100 people, women, and men. In the study described in this paper, the method of diagnostic survey, the method of estimation and analysis of patient records were used, and the research tools were the numerical scale of the NRS assessment, the modified Borg scale to assess dyspnea, the Trait Anxiety scale to test the intensity of anxiety and the sociodemographic assessment of the respondent. Results: Among the patients, the greatest number were people without dyspnoea (38 people) and with average levels of dyspnoea (26 people). People with lung cancer had a higher level of breathlessness than people with other cancers. Half of the patients included in the study felt anxiety at a low level. On average, men had a higher level of anxiety than women. Conclusion: 1) Patients staying in the hospice require comprehensive nursing care due to the underlying disease, comorbidities, and a wide range of medications taken, which aggravate the feeling of dyspnea and anxiety. 2) The study showed that in patients staying in the hospice, the level of dyspnea was of varying severity. The greatest number of people were without dyspnea (38) and patients with a low level of dyspnea (34). There were 12 people experiencing an average level of dyspnea and a high level of dyspnea 15. 3) The main factor influencing the severity of dyspnea in patients was the location of cancer. There was no significant relationship between the intensity of dyspnea and the age, gender of the patient, and time from diagnosis. 4) The study showed that in patients staying in the hospice, the level of anxiety was of varying severity. Most people experience a low level of anxiety (51). There were 16 people with a high level of anxiety, while there were 33 people experiencing anxiety at an average level. 5) The patient's gender was the main factor influencing the increase in anxiety intensity. Men had higher levels of anxiety than women. There was no significant correlation between the intensity of anxiety and the age of the respondents, as well as the type of cancer and time since diagnosis. 6) The intensity of dyspnea depended on the type of cancer the subjects had. People with lung cancer had a higher level of breathlessness than those with breast cancer and bowel cancer. It was not found that the anxiety increased depending on the type of cancer and comorbidities of the examined person.Keywords: cancer, shortness of breath, anxiety, senior, hospice
Procedia PDF Downloads 94226 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model
Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung
Abstract:
The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation
Procedia PDF Downloads 169225 An Explorative Analysis of Effective Project Management of Research and Research-Related Projects within a recently Formed Multi-Campus Technology University
Authors: Àidan Higgins
Abstract:
Higher education will be crucial in the coming decades in helping to make Ireland a nation is known for innovation, competitive enterprise, and ongoing academic success, as well as a desirable location to live and work with a high quality of life, vibrant culture, and inclusive social structures. Higher education institutions will actively connect with each student community, society, and business; they will help students develop a sense of place and identity in Ireland and provide the tools they need to contribute significantly to the global community. It will also serve as a catalyst for novel ideas through research, many of which will become the foundation for long-lasting inventive businesses in the future as part of the 2030 National Strategy on Education focuses on change and developing our education system with a focus on how we carry out Research. The emphasis is central to knowledge transfer and a consistent research framework with exploiting opportunities and having the necessary expertise. The newly formed Technological Universities (TU) in Ireland are based on a government initiative to create a new type of higher education institution that focuses on applied and industry-focused research and education. The basis of the TU is to bring together two or more existing institutes of technology to create a larger and more comprehensive institution that offers a wider range of programs and services to students and industry partners. The TU model aims to promote collaboration between academia, industry, and community organizations to foster innovation, research, and economic development. The TU model also aims to enhance the student experience by providing a more seamless pathway from undergraduate to postgraduate studies, as well as greater opportunities for work placements and engagement with industry partners. Additionally, the TUs are designed to provide a greater emphasis on applied research, technology transfer, and entrepreneurship, with the goal of fostering innovation and contributing to economic growth. A project is a collection of organised tasks carried out precisely to produce a singular output (product or service) within a given time frame. Project management is a set of activities that facilitates the successful implementation of a project. The significant differences between research and development projects are the (lack of) precise requirements and (the inability to) plan an outcome from the beginning of the project. The evaluation criteria for a research project must consider these and other "particularities" in works; for instance, proving something cannot be done may be a successful outcome. This study intends to explore how a newly established multi-campus technological university manages research projects effectively. The study will identify the potential and difficulties of managing research projects, the tools, resources and processes available in a multi-campus Technological University context and the methods and approaches employed to deal with these difficulties. Key stakeholders like project managers, academics, and administrators will be surveyed as part of the study, which will also involve an explorative investigation of current literature and data. The findings of this study will contribute significantly to creating best practices for project management in this setting and offer insightful information about the efficient management of research projects within a multi-campus technological university.Keywords: project management, research and research-related projects, multi-campus technology university, processes
Procedia PDF Downloads 60224 Environmental Restoration Science in New York Harbor - Community Based Restoration Science Hubs, or “STEM Hubs”
Authors: Lauren B. Birney
Abstract:
The project utilizes the Billion Oyster Project (BOP-CCERS) place-based “restoration through education” model to promote computational thinking in NYC high school teachers and their students. Key learning standards such as Next Generation Science Standards and the NYC CS4All Equity and Excellence initiative are used to develop a computer science curriculum that connects students to their Harbor through hands-on activities based on BOP field science and educational programming. Project curriculum development is grounded in BOP-CCERS restoration science activities and data collection, which are enacted by students and educators at two Restoration Science STEM Hubs or conveyed through virtual materials. New York City Public School teachers with relevant experience are recruited as consultants to provide curriculum assessment and design feedback. The completed curriculum units are then conveyed to NYC high school teachers through professional learning events held at the Pace University campus and led by BOP educators. In addition, Pace University educators execute the Summer STEM Institute, an intensive two-week computational thinking camp centered on applying data analysis tools and methods to BOP-CCERS data. Both qualitative and quantitative analyses were performed throughout the five-year study. STEM+C – Community Based Restoration STEM Hubs. STEM Hubs are active scientific restoration sites capable of hosting school and community groups of all grade levels and professional scientists and researchers conducting long-term restoration ecology research. The STEM Hubs program has grown to include 14 STEM Hubs across all five boroughs of New York City and focuses on bringing in-field monitoring experience as well as coastal classroom experience to students. Restoration Science STEM Hubs activities resulted in: the recruitment of 11 public schools, 6 community groups, 12 teachers, and over 120 students receiving exposure to BOP activities. Field science protocols were designed exclusively around the use of the Oyster Restoration Station (ORS), a small-scale in situ experimental platforms which are suspended from a dock or pier. The ORS is intended to be used and “owned” by an individual school, teacher, class, or group of students, whereas the STEM Hub is explicitly designed as a collaborative space for large-scale community-driven restoration work and in-situ experiments. The ORS is also an essential tool in gathering Harbor data from disparate locations and instilling ownership of the research process amongst students. As such, it will continue to be used in that way. New and previously participating students will continue to deploy and monitor their own ORS, uploading data to the digital platform and conducting analysis of their own harbor-wide datasets. Programming the STEM Hub will necessitate establishing working relationships between schools and local research institutions. NYHF will provide introductions and the facilitation of initial workshops in school classrooms. However, once a particular STEM Hub has been established as a space for collaboration, each partner group, school, university, or CBO will schedule its own events at the site using the digital platform’s scheduling and registration tool. Monitoring of research collaborations will be accomplished through the platform’s research publication tool and has thus far provided valuable information on the projects’ trajectory, strategic plan, and pathway.Keywords: environmental science, citizen science, STEM, technology
Procedia PDF Downloads 96223 Femoral Neck Anteversion and Neck-Shaft Angles: Determination and Their Clinical Implications in Fetuses of Different Gestational Ages
Authors: Vrinda Hari Ankolekar, Anne D. Souza, Mamatha Hosapatna
Abstract:
Introduction: Precise anatomical assessment of femoral neck anteversion (FNA) and the neck shaft angles (NSA) would be essential in diagnosing the pathological conditions involving hip joint and its ligaments. FNA of greater than 20 degrees is considered excessive femoral anteversion, whereas a torsion angle of fewer than 10 degrees is considered femoral retroversion. Excessive femoral torsion is not uncommon and has been associated with certain neurologic and orthopedic conditions. The enlargement and maturation of the hip joint increases at the 20th week of gestation and the NSA ranges from 135- 140◦ at birth. Material and methods: 48 femurs were tagged according to the GA and two photographs for each femur were taken using Nikon digital camera. Each femur was kept on a horizontal hard desk and end on an image of the upper end was taken for the estimation of FNA and a photograph in a perpendicular plane was taken to calculate the NSA. The images were transferred to the computer and were stored in TIFF format. Microsoft Paint software was used to mark the points and Image J software was used to calculate the angles digitally. 1. Calculation of FNA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. The angle made by this line with the horizontal plane was measured as FNA. 2. Calculation of NSA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. A vertical line was drawn passing through the tip of the greater trochanter to the inter-condylar notch. The angle formed by these lines was calculated as NSA. Results: The paired t-test for the inter-observer variability showed no significant difference between the values of two observers. (FNA: t=-1.06 and p=0.31; NSA: t=-0.09 and p=0.9). The FNA ranged from 17.08º to 33.97 º on right and 17.32 º to 45.08 º on left. The NSA ranged from 139.33 º to 124.91 º on right and 143.98 º to 123.8 º on left. Unpaired t-test was applied to compare the mean angles between the second and third trimesters which did not show any statistical significance. This shows that the FNA and NSA of femur did not vary significantly during the third trimester. The FNA and NSA were correlated with the GA using Pearson’s correlation. FNA appeared to increase with the GA (r=0.5) but the increase was not statistically significant. A decrease in the NSA was also noted with the GA (r=-0.3) which was also statistically not significant. Conclusion: The present study evaluates the FNA and NSA of the femur in fetuses and correlates their development with the GA during second and third trimesters. The FNA and NSA did not vary significantly during the third trimester.Keywords: anteversion, coxa antetorsa, femoral torsion, femur neck shaft angle
Procedia PDF Downloads 320222 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves
Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis
Abstract:
Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities
Procedia PDF Downloads 265221 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study
Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen
Abstract:
One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction
Procedia PDF Downloads 160220 Human Rabies Survivors in India: Epidemiological, Immunological and Virological Studies
Authors: Madhusudana S. N., Reeta Mani, Ashwini S. Satishchandra P., Netravati, Udhani V., Fiaz A., Karande S.
Abstract:
Rabies is an acute encephalitis which is considered 100% fatal despite occasional reports of survivors. However, in recent times more cases of human rabies survivors are being reported. In the last 5 years, there are six laboratories confirmed human rabies survivors in India alone. All cases were children below 15 years and all contracted the disease by dog bites. All of them also had received the full or partial course of rabies vaccination and 4 out of 6 had also received rabies immunoglobulin. All cases were treated in intensive care units in hospitals at Bangalore, Mumbai, Chandigarh, Lucknow and Goa. We report here the results of immunological and virological studies conducted at our laboratory on these patients. The clinical samples that were obtained from these patients were Serum, CSF, nuchal skin biopsy and saliva. Serum and CSF samples were subjected to standard RFFIT for estimation of rabies neutralizing antibodies. Skin biopsy, CSF and saliva were processed by TaqMan real-time PCR for detection of viral RNA. CSF, saliva and skin homogenates were also processed for virus isolation by inoculation of suckling mice. The PBMCs isolated from fresh blood was subjected to ELISPOT assay to determine the type of immune response (Th1/Th2). Both CSF and serum were also investigated for selected cytokines by Luminex assay. The level of antibodies to virus G protein and N protein were determined by ELISA. All survivors had very high titers of RVNA in serum and CSF 100 fold higher than non-survivors and vaccine controls. A five-fold rise in titer could be demonstrated in 4 out of 6 patients. All survivors had a significant increase in antibodies to G protein in both CSF and serum when compared to non-survivors. There was a profound and robust Th1 response in all survivors indicating that interferon gamma could play an important factor in virus clearance. We could isolate viral RNA in only one patient four years after he had developed symptoms. The partial N gene sequencing revealed 99% homology to species I strain prevalent in India. Levels of selected cytokines in CSF and serum did not reveal any difference between survivors and non-survivors. To conclude, survival from rabies is mediated by virus-specific immune responses of the host and clearance of rabies virus from CNS may involve the participation of both Th2 and Th1 immune responses.Keywords: rabies, rabies treatment, rabies survivors, immune reponse in rabies encephalitis
Procedia PDF Downloads 330219 Towards a Doughnut Economy: The Role of Institutional Failure
Authors: Ghada El-Husseiny, Dina Yousri, Christian Richter
Abstract:
Social services are often characterized by market failures, which justifies government intervention in the provision of these services. It is widely acknowledged that government intervention breeds corruption since resources are being transferred from one party to another. However, what is still being extensively studied is the magnitude of the negative impact of corruption on publicly provided services and development outcomes. Corruption has the power to hinder development and cripple our march towards the Sustainable Development Goals. Corruption diminishes the efficiency and effectiveness of public health and education spending and directly impacts the outcomes of these sectors. This paper empirically examines the impact of Institutional Failure on public sector services provision, with the sole purpose of studying the impact of corruption on SDG3 and 4; Good health and wellbeing and Quality education, respectively. The paper explores the effect of corruption on these goals from various perspectives and extends the analysis by examining if the impact of corruption on these goals differed when it accounted for the current corruption state. Using Pooled OLS(Ordinary Least Square) and Fixed effects panel estimation on 22 corrupt and 22 clean countries between 2000 and 2017. Results show that corruption in both corrupt and clean countries has a more severe impact on Health than the Education sector. In almost all specifications, corruption has an insignificant effect on School Enrollment rates but a significant effect on Infant Mortality rates. Results further indicate that, on average, a 1 point increase in the CPI(Consumer Price Index) can increase health expenditures by 0.116% in corrupt and clean countries. However, the fixed effects model indicates that the way Health and Education expenditures are determined in clean and corrupt countries are completely country-specific, in which corruption plays a minimal role. Moreover, the findings show that School Enrollment rates and Infant Mortality rates depend, to a large extent, on public spending. The most astounding results-driven is that corrupt countries, on average, have more effective and efficient healthcare expenditures. While some insights are provided as to why these results prevail, they should be further researched. All in all, corruption impedes development outcomes, and any Anti-corrupt policies taken will bring forth immense improvements and speed up the march towards sustainability.Keywords: corruption, education, health, public spending, sustainable development
Procedia PDF Downloads 169218 Spectroscopic Study of the Anti-Inflammatory Action of Propofol and Its Oxidant Derivatives: Inhibition of the Myeloperoxidase Activity and of the Superoxide Anions Production by Neutrophils
Authors: Pauline Nyssen, Ange Mouithys-Mickalad, Maryse Hoebeke
Abstract:
Inflammation is a complex physiological phenomenon involving chemical and enzymatic mechanisms. Polymorphonuclear neutrophil leukocytes (PMNs) play an important role by producing reactive oxygen species (ROS) and releasing myeloperoxidase (MPO), a pro-oxidant enzyme. Released both in the phagolysosome and the extracellular medium, MPO produces during its peroxidase and halogenation cycles oxidant species, including hypochlorous acid, involved in the destruction of pathogen agents, like bacteria or viruses. Inflammatory pathologies, like rheumatoid arthritis, atherosclerosis induce an excessive stimulation of the PMNs and, therefore, an uncontrolled release of ROS and MPO in the extracellular medium, causing severe damages to the surrounding tissues and biomolecules such as proteins, lipids, and DNA. The treatment of chronic inflammatory pathologies remains a challenge. For many years, MPO has been used as a target for the development of effective treatments. Numerous studies have been focused on the design of new drugs presenting more efficient MPO inhibitory properties. However, some designed inhibitors can be toxic. An alternative consists of assessing the potential inhibitory action of clinically-known molecules, having antioxidant activity. Propofol, 2,6-diisopropyl phenol, which is used as an intravenous anesthetic agent, meets these requirements. Besides its anesthetic action employed to induce a sedative state during surgery or in intensive care units, propofol and its injectable form Diprivan indeed present antioxidant properties and act as ROS and free radical scavengers. A study has also evidenced the ability of propofol to inhibit the formation of the neutrophil extracellular traps fibers, which are important to trap pathogen microorganisms during the inflammation process. The aim of this study was to investigate the potential inhibitory action mechanism of propofol and Diprivan on MPO activity. To go into the anti-inflammatory action of propofol in-depth, two of its oxidative derivatives, 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3’,5’-tetra isopropyl-(4,4’)-diphenoquinone (PPFDQ), were studied regarding their inhibitory action. Specific immunological extraction followed by enzyme detection (SIEFED) and molecular modeling have evidenced the low anti-catalytic action of propofol. Stopped-flow absorption spectroscopy and direct MPO activity analysis have proved that propofol acts as a reversible MPO inhibitor by interacting as a reductive substrate in the peroxidase cycle and promoting the accumulation of redox compound II. Overall, Diprivan exhibited a weaker inhibitory action than the active molecule propofol. In contrast, PPFQ seemed to bind and obstruct the enzyme active site, preventing the trigger of the MPO oxidant cycles. PPFQ induced a better chlorination cycle inhibition at basic and neutral pH in comparison to propofol. PPFDQ did not show any MPO inhibition activity. The three interest molecules have also demonstrated their inhibition ability on an important step of the inflammation pathway, the PMNs superoxide anions production, thanks to EPR spectroscopy and chemiluminescence. In conclusion, propofol presents an interesting immunomodulatory activity by acting as a reductive substrate in the peroxidase cycle of MPO, slowing down its activity, whereas PPFQ acts more as an anti-catalytic substrate. Although PPFDQ has no impact on MPO, it can act on the inflammation process by inhibiting the superoxide anions production by PMNs.Keywords: Diprivan, inhibitor, myeloperoxidase, propofol, spectroscopy
Procedia PDF Downloads 149217 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector
Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar
Abstract:
Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.Keywords: appliances efficiency improvement, energy star, market penetration, residential sector
Procedia PDF Downloads 286216 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 78215 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density
Authors: Lalit Kumar, Rashid Al Shidi
Abstract:
Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.Keywords: dubas bug, date palm, tree density, infestation levels
Procedia PDF Downloads 193214 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique
Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar
Abstract:
Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image
Procedia PDF Downloads 228213 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 285212 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization
Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman
Abstract:
In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization
Procedia PDF Downloads 240211 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers
Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran
Abstract:
With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.Keywords: optical fiber, multi-mode, data centers, encircled flux
Procedia PDF Downloads 375210 Strategy and Mechanism for Intercepting Unpredictable Moving Targets in the Blue-Tailed Damselfly (Ischnura elegans)
Authors: Ziv Kassner, Gal Ribak
Abstract:
Members of the Odonata order (dragonflies and damselflies) stand out for their maneuverability and superb flight control, which allow them to catch flying prey in the air. These outstanding aerial abilities were fine-tuned during millions of years of an evolutionary arms race between Odonata and their prey, providing an attractive research model for studying the relationship between sensory input – and aerodynamic output in a flying insect. The ability to catch a maneuvering target in air is interesting not just for insect behavioral ecology and neuroethology but also for designing small and efficient robotic air vehicles. While the aerial prey interception of dragonflies (suborder: Anisoptera) have been studied before, little is known about how damselflies (suborder: Zygoptera) intercept prey. Here, high-speed cameras (filming at 1000 frames per second) were used to explore how damselflies catch unpredictable targets that move through air. Blue-tailed damselflies - Ischnura elegans (family: Coenagrionidae) were introduced to a flight arena and filmed while landing on moving targets that were oscillated harmonically. The insects succeeded in capturing targets that were moved with an amplitude of 6 cm and frequencies of 0-2.5 Hz (fastest mean target speed of 0.3 m s⁻¹) and targets that were moved in 1 Hz (an average speed of 0.3 m s⁻¹) but with an amplitude of 15 cm. To land on stationary or slow targets, damselflies either flew directly to the target, or flew sideways, up to a point in which the target was fixed in the center of the field of view, followed by direct flight path towards the target. As the target moved in increased frequency, damselflies demonstrated an ability to track the targets while flying sideways and minimizing the changes of their body direction on the yaw axis. This was likely an attempt to keep the targets at the center of the visual field while minimizing rotational optic flow of the surrounding visual panorama. Stabilizing rotational optic flow helps in estimation of the velocity and distance of the target. These results illustrate how dynamic visual information is used by damselflies to guide them towards a maneuvering target, enabling the superb aerial hunting abilities of these insects. They also exemplifies the plasticity of the damselfly flight apparatus which enables flight in any direction, irrespective of the direction of the body.Keywords: bio-mechanics, insect flight, target fixation, tracking and interception
Procedia PDF Downloads 153209 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW
Procedia PDF Downloads 183208 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 125207 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada
Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman
Abstract:
Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.Keywords: HAND, DTM, rapid floodplain, simplified conceptual models
Procedia PDF Downloads 152206 Effects of Delphinidin on Lipid Metabolism in HepG2 Cells and Diet-Induced Obese Mice
Authors: Marcela Parra-Vargas, Ana Sandoval-Rodriguez, Roberto Rodriguez-Echevarria, Jose Dominguez-Rosales, Juan Armendariz-Borunda
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is characterized by an excess of hepatic lipids, and it is to author’s best knowledge, the most prevalent chronic liver disorder. Anthocyanin-rich food consumption is linked to health benefits in metabolic disorders associated with obesity and NAFLD, although the precise functional role of anthocyanidin delphinidin (Dp) has yet to be established. The aim of this study was to investigate the effect of the Dp in NAFLD metabolic alterations by evaluating prevention or amelioration of hepatic lipid accumulation, as well as molecular mechanisms in two experimental obesity-related models of NALFD. In vitro: HepG2 cells were incubated with sodium palmitate (PA, 1 mM) to induce lipotoxic damage, and concomitantly treated with Dp (180 uM) for 24 h. Subsequently, total lipid accumulation was measured by colorimetric staining with Oil Red O, and total intrahepatic triglycerides were determined by an enzymatic assay. To assess molecular mechanisms, cells were pre-treated with PA for 24 h and then exposed to Dp for 1 h. In vivo: four-week-old male C57BL/6Nhsd mice were allocated in two main groups. Mice were fed with standard diet (control) or high-fat and high-carbohydrate diet (45% fat, HFD) for 16 wk to induce NAFLD. Then HFD was divided into subgroups: one treated orally with Dp (15 mg/kg bw, HFD-Dp) every day for 4 wk, while HFD group treated with vehicle (DMSO). Weight and fasting glucose were recorded weekly, while dietary ingestion was measured daily. Insulin tolerance test was performed at the end of treatment. Liver histology was evaluated with H&E and Masson’s trichrome stain. RT-PCR was used to evaluate gene expression and Western Blot to determine levels of protein in both experimental models. Parametric data were analyzed with one-way ANOVA and Tukey’s post-hoc test. Kruskal-Wallis and Mann-Whitney U test for non-parametric data, and P < 0.5 were considered significant. Dp prevented hepatic lipid accumulation by PA in HepG2 hepatocytes. Furthermore, Dp down-regulated gene expression of SREBP1c, FAS, and CPT1a without modifying AMPK phosphorylation levels. In vivo, Dp oral administration did not ameliorate lipid metabolic alterations raised by HFD. Adiposity, dietary ingestion, fasting glucose, and insulin sensitivity after Dp treatment remained similar to HFD group. Histological analysis showed hepatic damage in HFD groups and no differences between HFD and HFD-Dp groups were found. Hepatic gene expression of ACC and FAS were not altered by HFD. SREBP1c was similar in both HFD and HFD-Dp groups. No significant changes were observed in SREBP1c, ACC, and FAS adipose tissue gene expression by HFD or Dp treatment. Additionally, immunoblotting analysis revealed no changes in pathway SIRT1-LKB-AMPK and PPAR alpha by both HFD groups compared to control. In conclusion, the antioxidant Dp may provoke beneficial effects in the prevention of hepatic lipid accumulation. Nevertheless, the oral dose administrated in mice that simulated the total intake of anthocyanins consumed daily by humans has no effect as a treatment on hepatic lipid metabolic alterations and histological abnormalities associated with exposure to chronic HFD. A healthy lifestyle with regular intake of antioxidants such as anthocyanins may prevent metabolic alterations in NAFLD.Keywords: anthocyanins, antioxidants, delphinidin, non-alcoholic fatty liver disease, obesity
Procedia PDF Downloads 202205 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 184204 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique
Authors: Pavana Basavakumar, Devadas Bhat
Abstract:
Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes
Procedia PDF Downloads 325203 Evaluation of Antioxidant Activity and Total Phenolic Content of Lens Esculenta Moench, Seeds
Authors: Vivek Kumar Gupta, Kripi Vohra, Monika Gupta
Abstract:
Pulses have been a vital ingredient of the balanced human diet in India. Lentil (Lens culinaris Medikus or Lens esculenta Moench.) is a common legume known since biblical times. Lentil seeds, with or without hulls, are cooked as dhal and this has been the main dish for millennia in the South Asian region. Oxidative stress can damage lipids, proteins, enzymes, carbohydrates and DNA in cells and tissues, resulting in membrane damage, fragmentation or random cross linking of molecules like DNA, enzymes and structural proteins and even lead to cell death induced by DNA fragmentation and lipid peroxidation. These consequences of oxidative stress construct the molecular basis in the development of cancer, neurodegenerative disorders, cardiovascular diseases, diabetes and autoimmune. The aim of the present work is to assess the antioxidant potential of the peteroleum ether, acetone, methanol and water extract of the Lens esculenta seeds. In vitro antioxidant assessment of the extracts was carried out using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay. The quantitative estimation of total phenolic content, total flavonoid content in extracts and in plant material, total saponin content, total alkaloid content, crude fibre content, total volatile content, fat content and mucilage content in drug material was also carried out. Though all the extracts exhibited dose dependent reducing power activity the acetone extract was found to possess significant hydrogen donating ability in DPPH (45.83%-93.13%) and hydroxyl radical scavenging system (28.7%-46.41%) than the peteroleum ether, methanol and water extracts. Total phenolic content in the acetone and methanol extract was found to be 608 and 188 mg gallic acid equivalent of phenol/g of sample respectively. Total flavonoid content of acetone and methanol extract was found to be 128 and 30.6 mg quercetin equivalent/g of sample respectively. It is evident that acetone extract of Lentil seeds possess high levels of polyphenolics and flavonoids that could be utilized as antioxidants and neutraceuticals.Keywords: antioxidant, flavanoids, Lens esculenta, polyphenols
Procedia PDF Downloads 484202 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 88