Search results for: forecasting accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4142

Search results for: forecasting accuracy

1742 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 264
1741 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147
1740 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
1739 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
1738 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes

Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar

Abstract:

Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.

Keywords: continuous query processing, dynamic database, moving object, skyline queries

Procedia PDF Downloads 210
1737 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: data estimation, link data, machine learning, road network

Procedia PDF Downloads 510
1736 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
1735 3D Modelling of Fluid Flow in Tunnel Kilns

Authors: Jaber H. Almutairi, Hosny Z. Abou-Ziyan, Issa F. Almesri, Mosab A. Alrahmani

Abstract:

The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling.

Keywords: tunnel kilns, flow separation, flow uniformity, computational fluid dynamics

Procedia PDF Downloads 329
1734 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy

Authors: Chaluntorn Vichasilp, Sutee Wangtueai

Abstract:

This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.

Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)

Procedia PDF Downloads 382
1733 Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V

Authors: Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Junior Nomani, Guy Littlefair

Abstract:

Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.

Keywords: additive manufacturing, build orientation, machinability, titanium alloys (Ti-6Al-4V)

Procedia PDF Downloads 283
1732 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water

Authors: Manjie Li, Xiangju Cheng, Yongcan Chen

Abstract:

With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.

Keywords: assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement

Procedia PDF Downloads 276
1731 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.

Keywords: climate change, projections, solar radiation, validation

Procedia PDF Downloads 206
1730 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning

Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi

Abstract:

In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.

Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh

Procedia PDF Downloads 146
1729 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers

Authors: Catherine Vasnetsov, Victor Vasnetsov

Abstract:

Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.

Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers

Procedia PDF Downloads 70
1728 Using Data-Driven Model on Online Customer Journey

Authors: Ing-Jen Hung, Tzu-Chien Wang

Abstract:

Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.

Keywords: LSTM, customer journey, marketing, channel ads

Procedia PDF Downloads 121
1727 Software Reliability Prediction Model Analysis

Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability

Procedia PDF Downloads 464
1726 Short Arc Technique for Baselines Determinations

Authors: Gamal F.Attia

Abstract:

The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.

Keywords: baselines, short arc, dynamical, gravitational field

Procedia PDF Downloads 463
1725 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 45
1724 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 293
1723 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 374
1722 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 82
1721 Feasibility of Small Hydropower Plants Odisha

Authors: Sanoj Sahu, Ramakar Jha

Abstract:

Odisha (India) is in need of reliable, cost-effective power generation. A prolonged electricity crisis and increasing power demand have left over thousands of citizens without access to electricity, and much of the population suffers from sporadic outages. The purpose of this project is to build a methodology to evaluate small hydropower potential, which can be used to alleviate the Odisha’s energy problem among rural communities. This project has three major tasks: the design of a simple SHEP for a single location along a river in the Odisha; the development of water flow prediction equations through a linear regression analysis; and the design of an ArcGIS toolset to estimate the flow duration curves (FDCs) at locations where data do not exist. An explanation of the inputs to the tool, as well has how it produces a suitable output for SHEP evaluation will be presented. The paper also gives an explanation of hydroelectric power generation in the Odisha, SHEPs, and the technical and practical aspects of hydroelectric power. Till now, based on topographical and rainfall analysis we have located hundreds of sites. Further work on more number of site location and accuracy of location is to be done.

Keywords: small hydropower, ArcGIS, rainfall analysis, Odisha’s energy problem

Procedia PDF Downloads 448
1720 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 309
1719 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 485
1718 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete

Authors: Jiaqi Huang, Lu Jin

Abstract:

Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.

Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete

Procedia PDF Downloads 181
1717 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 191
1716 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail

Authors: A. Shebani, S. Iwnicki

Abstract:

Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.

Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer

Procedia PDF Downloads 355
1715 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers

Authors: Margarita Dufresne

Abstract:

This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.

Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel

Procedia PDF Downloads 72
1714 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications

Authors: Hatim Laalej, Jon Stammers

Abstract:

In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.

Keywords: machining, manufacturing, tool wear, signal processing

Procedia PDF Downloads 245
1713 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker

Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang

Abstract:

The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).

Keywords: inertial navigation, adaptive filtering, star tracker, FOG

Procedia PDF Downloads 80