Search results for: Uniform Linear Array (ULA)
2532 Combined Localization, Beamforming, and Interference Threshold Estimation in Underlay Cognitive System
Authors: Omar Nasr, Yasser Naguib, Mohamed Hafez
Abstract:
This paper aims at providing an innovative solution for blind interference threshold estimation in an underlay cognitive network to be used in adaptive beamforming by secondary user Transmitter and Receiver. For the task of threshold estimation, blind detection of modulation and SNR are used. For the sake of beamforming several localization algorithms are compared to settle on best one for cognitive environment. Beamforming algorithms as LCMV (Linear Constraint Minimum Variance) and MVDR (Minimum Variance Distortion less) are also proposed and compared. The idea of just nulling the primary user after knowledge of its location is discussed against the idea of working under interference threshold.Keywords: cognitive radio, underlay, beamforming, MUSIC, MVDR, LCMV, threshold estimation
Procedia PDF Downloads 5822531 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 3492530 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction
Procedia PDF Downloads 5992529 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 2382528 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.Keywords: bearing, force measurement, IoT, strain gauge
Procedia PDF Downloads 1422527 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor
Authors: Shima Soleimani, Steven Eckels
Abstract:
One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.Keywords: three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger
Procedia PDF Downloads 1182526 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load
Authors: Morteza Raminnia
Abstract:
In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers
Procedia PDF Downloads 4192525 Factors Influencing Violence Experienced by Medical Staff in Primary Health Care Centers, Taif City
Authors: Turki Adnan Kamal, Abdulmajeed Ahmad Alsofiany, Nemer Khidhran Husain Alghamdi, Ali Eissa Hassan Al-Rajhi
Abstract:
Background:- Health care workers are ranked as one of the most vulnerable groups experiencing violence and aggressive behavior compared to other occupational groups. Objectives:- To estimate the prevalence rate and characteristics and assess the avoidance measures, and notification of the violence among medical staff working in primary health care centers in Taif city. Subject and methods:- A cross-sectional study design was applied among all physicians and a representative sample of nurses working in primary health care centers affiliated with the Ministry of Health (MOH) in Taif city. A predesigned Arabic/English validated self-administered questionnaire was used. Results:- In this study, 56 physicians and 145 nurses responded, giving a response rate of 77.6%. Their age ranged from 25 and 60 years (36.2±8.2), with 59.7% of them aged between 25 and 35 years. Males represent 55.7% of them. More than half of them (52.2%) were Saudis. The prevalence of workplace violence was 30.3%. Verbal abuse was the commonest reported type (86.9%). The absence of security, training on the procedures that must be followed and special uniforms at the workplace were significantly associated with workplace violence. We concluded that workplace violence is a significant problem facing a considerable proportion of HCWs in primary health care centers in Taif, Saudi Arabia. Most violence incidents were verbal. Conclusion:- Findings of this study revealed that HCWs who were dealing with male patients only were at high risk of workplace violence and the absence of measures to avoid workplace violence, particularly security, training on the procedures that must be followed and special uniform at the workplace was significantly associated with workplace violence.Keywords: violence, workplace, primary health care, prevalence, avoidance
Procedia PDF Downloads 952524 Material Chemistry Level Deformation and Failure in Cementitious Materials
Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo
Abstract:
Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.Keywords: cementitious materials, deformation, failure, material chemistry modeling
Procedia PDF Downloads 2862523 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison
Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir
Abstract:
Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity
Procedia PDF Downloads 902522 Breeding Cotton for Annual Growth Habit: Remobilizing End-of-season Perennial Reserves for Increased Yield
Authors: Salman Naveed, Nitant Gandhi, Grant Billings, Zachary Jones, B. Todd Campbell, Michael Jones, Sachin Rustgi
Abstract:
Cotton (Gossypium spp.) is the primary source of natural fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified markers associated with the gene expression traits via genome-wide association analysis using a 63K SNP Array (Hulse-Kemp et al. 2015 G3 5:1187). Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed association with expression traits. Out of these 396 markers, 159 mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated via virus-induced gene silencing.Keywords: cotton, GWAS, QTL, expression traits
Procedia PDF Downloads 1512521 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 3722520 Theoretical Analysis and Design Consideration of Screened Heat Pipes for Low-Medium Concentration Solar Receivers
Authors: Davoud Jafari, Paolo Di Marco, Alessandro Franco, Sauro Filippeschi
Abstract:
This paper summarizes the results of an investigation into the heat pipe heat transfer for solar collector applications. The study aims to show the feasibility of a concentrating solar collector, which is coupled with a heat pipe. Particular emphasis is placed on the capillary and boiling limits in capillary porous structures, with different mesh numbers and wick thicknesses. A mathematical model of a cylindrical heat pipe is applied to study its behaviour when it is exposed to higher heat input at the evaporator. The steady state analytical model includes two-dimensional heat conduction in the HP’s wall, the liquid flow in the wick and vapor hydrodynamics. A sensitivity analysis was conducted by considering different design criteria and working conditions. Different wicks (mesh 50, 100, 150, 200, 250, and, 300), different porosities (0.5, 0.6, 0.7, 0.8, and 0.9) with different wick thicknesses (0.25, 0.5, 1, 1.5, and 2 mm) are analyzed with water as a working fluid. Results show that it is possible to improve heat transfer capability (HTC) of a HP by selecting the appropriate wick thickness, the effective pore radius, and lengths for a given HP configuration, and there exist optimal design criteria (optimal thick, evaporator adiabatic and condenser sections). It is shown that the boiling and wicking limits are connected and occurs in dependence on each other. As different parts of the HP external surface collect different fractions of the total incoming insolation, the analysis of non-uniform heat flux distribution indicates that peak heat flux is not affecting parameter. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature SC application.Keywords: screened heat pipes, analytical model, boiling and capillary limits, concentrating collector
Procedia PDF Downloads 5602519 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.Keywords: vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism
Procedia PDF Downloads 4602518 Modelling of Hydric Behaviour of Textiles
Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.
Abstract:
The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.Keywords: comfort, hydric properties, modelling, underwears
Procedia PDF Downloads 1492517 Crystalline Silica Exposure in Tunnelling: Identifying Barriers to Safe Practices
Authors: Frederick Anlimah, Vinod Gopaldasani, Catherine MacPhail, Brian Davies
Abstract:
The construction industry, particularly tunnel construction, exposes workers to respirable crystalline silica (RCS), which can cause incurable illnesses such as silicosis and lung cancer. Despite various control measures, exposures remain inadequately controlled. This research aimed to identify the barriers and challenges hindering the implementation of effective controls and the adoption of safe work practices to protect workers from RCS exposure in tunnelling. A mixed-method approach was employed for this research. Tunnel construction workers were observed, surveyed and interviewed to gauge their knowledge and attitudes and understand their challenges in reducing RCS exposure. The preliminary analysis of the data reveals a diverse array of sociotechnical factors interacting to influence RCS exposure. It is noteworthy that participants consistently emphasised the project as the most exemplary one they have been involved in, although there is room for improvement. While there is a commendable level of knowledge about RCS exposure and control in tunnelling, there is a striking lack of perceived satisfaction regarding dust control. Several factors were identified as interacting to prevent the effective management of dust. These include perceived time pressure, absence of on-tool dust controls, low risk perceptions among workers, and inadequate enforcement of controls. Moreover, participants highlighted communication and heat-related challenges as hindrances to the continuous wear of respirators. This research highlights the need for a paradigm shift in tunnel construction to address the barriers associated with RCS exposure reduction. It emphasises the importance of collaboration among various stakeholders, advocating for more effective controls and enforcement strategies and enhanced worker education through knowledge sharing.Keywords: respirable crystalline silica, dust control, worker practices, exposure prevention, silicosis
Procedia PDF Downloads 682516 Design Analysis of Tilting System for Spacecraft Transportation
Authors: P. Naresh, Amir Iqbal
Abstract:
Satellite transportation is inevitable step during the course of integration testing and launch. Large satellites are transported in horizontal mode due to constraints on commercially available cargo bay dimensions & on road obstacles. To facilitate transportation of bigger size spacecraft in horizontal mode a tilting system is released. This tilting system consists of tilt table, columns, hinge pin, angular contact bearings, slewing bearing and linear actuators. The tilting system is very compact and easy to use however it is also serves the purpose of a fixture so it is of immense interest to know the stress and fundamental frequency of the system in transportation configuration. This paper discusses design aspects and finite element analysis of tilting system-cum-fixture using Hypermesh/Nastran.Keywords: tilt table, column, slewing bearing, stress, modal analysis
Procedia PDF Downloads 5742515 Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger
Abstract:
The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3.Keywords: boiling, metallic foam, heat transfer, plate heat exchanger
Procedia PDF Downloads 4752514 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1202513 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4052512 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors
Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany
Abstract:
Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.Keywords: numerical simulation, carbonization, gasification, biomass, reactor
Procedia PDF Downloads 1012511 Comparative Evaluation of Ultrasound Guided Internal Jugular Vein Cannulation Using Measured Guided Needle and Conventional Size Needle for Success and Complication of Cannulation
Authors: Devendra Gupta, Vikash Arya, Prabhat K. Singh
Abstract:
Background: Ultrasound guidance could be beneficial in placing central venous catheters by improving the success rate, reducing the number of needle passes, and decreasing complications. Central venous cannulation set has a single puncture needle of a fixed length of 6.4 cm. However, the average distance of midpoint of IJV to the skin is around 1 cm to 2 cm. The long length needle has tendency to go in depth more than required and this is very common during learning period of any individual. Therefore, we devised a long needle with a guard which can be adjusted according to the required length. Methods: After approval from the institute ethics committee and patient’s written informed consent, a prospective, randomized, single-blinded controlled study was conducted. Adult patient aged of both sexes with ASA grade 1-2 undergoing surgery requiring internal jugular venous (IJV) access was included. After intubation, the head was rotated to the contralateral side at 30 degree head rotation on the position of the right IJV. The transducer probe a 6.5 to 13-MHz linear transducer (Sonosite, USA) had been placed at the apex of triangle with minimal pressure to avoid IJV compression. The distance from skin to midpoint of the right IJV and skin to anterior wall of Common Carotid Artery (CCA) had been done using B-mode duplex sonography with a 6.5 to 13-MHz linear transducer. Depending upon the results of randomization 420 patients had been divided into two groups of equal numbers (n=210). Group 1. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle; and Group 2. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle with guard fixed to a required length (length between skin and midpoint of IJV) by an experienced anesthesiologist. Independent observer has noted the number of attempts and occurrence of complications (CCA puncture, pneumothorax or adjacent tissue damage). Results: Demographic data were similar in both the group. The groups were comparable when considered for relationship of IJV to CCA. There was no significant difference between groups as regard to distance of midpoint of IJV to the skin (p<0.05). IJV cannulation was successfully done in single attempts in 180 (85.7%), in two attempts in 27 (12.9%) and three attempts in 3 (1.4%) in group I, whereas in single attempt in 207 (98.6%) and second attempts in 3 (1.4%) in group II (p <0.000). Incidence of carotid artery puncture was significantly more in group I (7.1%) compared to group II (0%) (p<0.000). Incidence of adjacent tissue puncture was significantly more in group I (8.6%) compared to group II (0%) (p<0.000). Conclusion: Therefore IJV catheterization using guard over the needle at predefined length with the help of real-time ultrasound results in better success rates and lower immediate complications.Keywords: ultrasound guided, internal jugular vein cannulation, measured guided needle, common carotid artery puncture
Procedia PDF Downloads 2212510 Tectonic Setting of Hinterland and Foreland Basins According to Tectonic Vergence in Eastern Iran
Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat
Abstract:
Various tectonic interpretations have been presented by different researchers to explain the geological evolution of eastern Iran, but there are still many ambiguities and many disagreements about the geodynamic nature of the Paleogene mountain range of eastern Iran. The purpose of this research is to clarify and discuss the tectonic position of the foreland and hinterland regions of eastern Iran from the tectonic perspective of sedimentary basins. In the tectonic model of oceanic subduction crust under the Afghan block, the hinterland is located to the east and on the Afghan block, and the foreland is located on the passive margin of the Sistan open ocean in the west. After the collision of the two microcontinents, the foreland basin must be located somewhere on the passive margin of the Lut block. This basin can deposit thick Paleocene to Oligocene sediments on the Cretaceous and older sediments. Thrust faults here will move towards the west. If we accept the subduction model of the Sistan Ocean under the Lut Block, the hinterland is located to the west towards the Lut Block, and the foreland basin is located towards the Sistan Ocean in the east. After the collision of the two microcontinents, the foreland basin with Paleogene sediments should expand on the Sefidaba basin. Thrust faults here will move towards the east. If we consider the two-sided subduction model of the ocean crust under both Lut and Afghan continental blocks, the tectonic position of the foreland and hinterland basins will not change and will be similar to the one-sided subduction models. After the collision of two microcontinents, the foreland basin should develop in the central part of the eastern Iranian orogen. In the oroclinic buckling model, the foreland basin will continue not only in the east and west but continuously in the north as well. In this model, since there is practically no collision, the foreland basin is not developed, and the remnants of the Sistan Ocean ophiolites and their deep turbidite sediments appear in the axial part of the mountain range, where the Neh and Khash complexes are located. The structural data from this research in the northern border of the Sistan belt and the Lut block indicate the convergence of the tectonic vergence directions towards the interior of the Sistan belt (in the Ahangaran area towards the southwest, in the north of Birjand towards the south-southeast, in the Sechengi area to the southeast). According to this research, not only the general movement of thrust sheets do not follow the linear orogeny models, but the expected active foreland basins have not been formed in the mentioned places in eastern Iran. Therefore, these results do not follow previous tectonic models for eastern Iran (i.e., rifting of eastern Iran continental crust and subsequent linear collision of the Lut and Afghan blocks), but it seems that was caused by buckling model in the Late Eocene-Oligocene.Keywords: foreland, hinterland, tectonic vergence, orocline buckling, eastern Iran
Procedia PDF Downloads 662509 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy
Procedia PDF Downloads 1102508 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement
Authors: M. Naji, A. R. Khalim, M. Naji
Abstract:
Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction
Procedia PDF Downloads 2892507 A New Mathematical Model for Scheduling Preventive Maintenance and Renewal Projects of Multi-Unit Systems; Application to Railway Track
Authors: Farzad Pargar
Abstract:
We introduce the preventive maintenance and renewal scheduling problem for a multi-unit system over a finite and discretized time horizon. Given the latest possible time for carrying out the next maintenance and renewal projects after the previous ones and considering several common set-up costs, the introduced scheduling model tries to minimize the cost of projects by grouping them and simultaneously finding the optimal balance between doing maintenance and renewal. We present a 0-1 pure integer linear programming that determines which projects should be performed together on which location and in which period (e.g., week or month). We consider railway track as a case for our study and test the performance of the proposed model on a set of test problems. The experimental results show that the proposed approach performs well.Keywords: maintenance, renewal, scheduling, mathematical programming model
Procedia PDF Downloads 6872506 A User Interface for Easiest Way Image Encryption with Chaos
Authors: D. López-Mancilla, J. M. Roblero-Villa
Abstract:
Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.Keywords: image encryption, chaos, secure communications, user interface
Procedia PDF Downloads 4892505 Simulation of Behaviour Dynamics and Optimization of the Energy System
Authors: Iva Dvornik, Sandro Božić, Žana Božić Brkić
Abstract:
System-dynamic simulating modelling is one of the most appropriate and successful scientific methods of the complex, non-linear, natural, technical and organizational systems. In the recent practice its methodology proved to be efficient in solving the problems of control, behavior, sensitivity and flexibility of the system dynamics behavior having a high degree of complexity, all these by computing simulation i.e. “under laboratory conditions” what means without any danger for observed realities. This essay deals with the research of the gas turbine dynamic process as well as the operating pump units and transformation of gas energy into hydraulic energy has been simulated. In addition, system mathematical model has been also researched (gas turbine- centrifugal pumps – pipeline pressure system – storage vessel).Keywords: system dynamics, modelling, centrifugal pump, turbine, gases, continuous and discrete simulation, heuristic optimisation
Procedia PDF Downloads 1082504 Directionally-Sensitive Personal Wearable Radiation Dosimeter
Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe
Abstract:
In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.Keywords: dose rate, Geant4 package, radiation dosimeter, radioactive source direction
Procedia PDF Downloads 3272503 Study of Seismic Behavior of an Earth Dam with Sealing Walls: The Case of Kef Eddir’s Dam, Tipaza, Algeria
Authors: M. Boumaiza, S. Mohamadi, B. Moussai
Abstract:
In this article the study of the seismic response of an earth dam with sealing walls has been made by introducing the effect of the change of position and depth of the sealing wall and the effect of non-linear behavior of soil of the foundation by taking into account the variation of the viscous damping and shear modulus in each layer of soil on the seismic response of the dam. As a case study, we take the Algerian dam Kef-Eddir which lies in the far west of the territory of the Wilaya of Tipaza (wadi Eddamous), classified according to the RPA 2003 as a high seismicity zone (zone III). With a height of 71m above the foundation and a width of 478m. The seismic event applied to the rock, is the earthquake of Chenoua (29 October, 1989), with a magnitude Mw=6 that hit the region.Keywords: earth dam, earthquake, sealing walls, viscous damping
Procedia PDF Downloads 607