Search results for: scale invariant feature
5145 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels
Authors: Pierre van Tonder, Christoff Kruger
Abstract:
Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure
Procedia PDF Downloads 1955144 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming
Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter
Abstract:
High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.Keywords: hyperelastic, anisotropic, polymer film, thermoforming
Procedia PDF Downloads 6175143 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3765142 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 1375141 The Role of Principals’ Emotional Intelligence on School Leadership Effectiveness
Authors: Daniel Gebreslassie Mekonnen
Abstract:
Effective leadership has a crucial role in excelling in the overall success of a school. Today there is much attention given to school leadership, without which schools can never be successful. Therefore, the study was aimed at investigating the role of principals’ leadership styles and their emotional intelligence on the work motivation and job performance of teachers in Addis Ababa, Ethiopia. The study, thus, first examined the relationship between work motivation and job performance of the teachers in relation to the perceived leadership styles and emotional intelligence of principals. Second, it assessed the mean differences and the interaction effects of the principals’ leadership styles and emotional intelligence on the work motivation and job performance of the teachers. Finally, the study investigated whether principals’ leadership styles and emotional intelligence variables had significantly predicted the work motivation and job performance of teachers. As a means, a quantitative approach and descriptive research design were employed to conduct the study. Three hundred sixteen teachers were selected using multistage sampling techniques as participants of the study from the eight sub-cities in Addis Ababa. The main data-gathering instruments used in this study were the path-goal leadership questionnaire, emotional competence inventory, multidimensional work motivation scale, and job performance appraisal scale. The quantitative data were analyzed by using the statistical techniques of Pearson–product-moment correlation analysis, two-way analysis of variance, and stepwise multiple regression analysis. Major findings of the study have revealed that the work motivation and job performance of the teachers were significantly correlated with the perceived participative leadership style, achievement-oriented leadership style, and emotional intelligence of principals. Moreover, the emotional intelligence of the principals was found to be the best predictor of the teachers’ work motivation, whereas the achievement-oriented leadership style of the principals was identified as the best predictor of the job performance of the teachers. Furthermore, the interaction effects of all four path-goal leadership styles vis-a-vis the emotional intelligence of the principals have shown differential effects on the work motivation and job performance of teachers. Thus, it is reasonable to conclude that emotional intelligence is the sine qua non of effective school leadership. Hence, this study would be useful for policymakers and educational leaders to come up with policies that would enhance the role of emotional intelligence on school leadership effectiveness. Finally, pertinent recommendations were drawn from the findings and the conclusions of the study.Keywords: emotional intelligence, leadership style, job performance, work motivation
Procedia PDF Downloads 1005140 Anti-Site Disorder Effects on the Magnetic Properties of Sm₂NiMnO₆ Thin Films
Authors: Geetanjali Singh, R. J. Choudhary, Anjana Dogra
Abstract:
Here we report the effects of anti-site disorder, present in the sample, on the magnetic properties of Sm₂NiMnO₆ (SNMO) thin films. To our best knowledge, there are no studies available on the thin films of SNMO. Thin films were grown using pulsed laser deposition technique on SrTiO₃ (STO) substrate under oxygen pressure of 800 mTorr. X-ray diffraction (XRD) profiles show that the film grown is epitaxial. Field cooled (FC) and zero field cooled (ZFC) magnetization curve increase as we decrease the temperature till ~135K. A broad dip was observed in both the curves below this temperature which is more dominating in ZFC curve. An additional sharp cusplike shape was observed at low temperature (~20 K) which is due to the re-entrant spin-glass like properties present in the sample. Super-exchange interaction between Ni²⁺-O-Mn⁴⁺ is attributed to the FM ordering in these samples. The spin-glass feature is due to anti-site disorder within the homogeneous sample which was stated to be due to the mixed valence states Ni³⁺ and Mn³⁺ present in the sample. Anti-site disorder was found to play very crucial role in different magnetic phases of the sample.Keywords: double perovskite, pulsed laser deposition, spin-glass, magnetization
Procedia PDF Downloads 2625139 Comparing Three Complementary Interventions (Mindfulness-Meditation, Gratitude, and Affirmations) in the Context of Stress
Authors: Regina Bowler
Abstract:
Rationale & Aims: Complementary interventions such as mindfulness-meditation, gratitude, and self-affirmation are often used by therapists to treat stress. Many studies have been conducted using these interventions either individually or adjunctively with regard to stress. However, there has been little work comparing these interventions to investigate which of them is the most effective in treating stress. This study aims to compare these interventions and to determine which of them has the strongest perceived and physiological impact on stress. Participants: 120 law students preparing to take the bar exam: 3 experimental groups of 30 individuals, 1 control group of 30 individuals. Methods: One day prior to administering the interventions, baseline salivary cortisol samples will be taken, and the participants will complete the perceived stress scale (Cohen et al., 1983). Thirty days prior to the bar exam, each experimental group will be given an intervention to practice. Interventions will be practiced once in the morning after waking and once at night at bedtime. In group one, each participant will do a recorded three-minute mindfulness meditation. In group two, each participant will practice gratitude by writing down three things he/she/they are grateful for. In group three, each participant will practice affirmation by writing three sentences affirming his/her/their core values. The control group will not have an intervention to practice. Starting experimental day 1, upon waking and prior to practicing the intervention, the participants will take a salivary cortisol sample. Then they will practice their given intervention. Every night, before going to bed, the participants will practice their given intervention for a second time. The participants will practice their interventions and take salivary cortisol samples for 28 days. After each seven-day period (days 7, 14, 21, 28), the participants will fill out a brief questionnaire about the effects their intervention has on their stress, daily life, and relationships with themselves and others. On day 29, the participants will take a final salivary cortisol sample and will fill out the Perceived Stress Scale (Cohen et al., 1983). Applications of findings: Findings from this study would inform therapists of best practices when working with clients with stress. Moreover, therapists will gain knowledge of how individuals perceive these interventions and their impact on stress, daily life, somatic symptoms, and relationships with self and others. Thus, therapists will be able to administer these interventions with more precision to the stress-related contexts and issues their clients bring.Keywords: stress, mindfulness-meditation, gratitude, affirmations, complementary interventions
Procedia PDF Downloads 425138 Heuristic Classification of Hydrophone Recordings
Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas
Abstract:
An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.Keywords: anthrophony, hydrophone, k-means, machine learning
Procedia PDF Downloads 1705137 Electrochemical and Microstructure Properties of Chromium-Graphene and SnZn-Graphene Oxide Composite Coatings
Authors: Rekha M. Y., Punith Kumar, Anshul Kamboj, Chandan Srivastava
Abstract:
Coatings plays an important role in providing protection for a substrate and in improving the surface quality. Graphene/graphene oxide (GO) using in coating systems provides an environmental friendly solution towards protection against corrosion. Issues such as, lack of scale, high cost, low quality limits the practical application of graphene/GO as corrosion resistant coating material. One other way to employ these materials for corrosion protection is to incorporate them into coatings that are conventionally used for corrosion protection. Due to the extraordinary properties of graphene/GO, it has been demonstrated that the coatings containing graphene/GO are more corrosion resistant than pure metal/alloy coatings. In the present work, Cr-graphene and SnZn-GO composite coatings were investigated in enhancing the corrosion resistant property when compared to pure Cr coating and pure SnZn coating respectively. All the coatings were electrodeposited over mild-steel substrate. Graphene and GO were synthesized by electrochemical exfoliation method and modified Hummers’ method respectively. In Cr coatings, the microstructural study revealed that the addition of formic acid in the coatings reduced the number of cracks in the coatings. Further addition of graphene in Cr coating enhanced the Cr coating’s morphology. Chemically synthesized ZnO nanoparticles were also embedded in the as-deposited Cr and Cr-graphene coatings to enhance the adhesion of the coating, to improve the surface finish and to increase the corrosion resistant property of the coatings. Diffraction analysis revealed that the addition of graphene also altered the texture of the Cr coatings. In SnZn alloy coatings, the morphological and topographical characterization revealed that the relative smoothness and compactness of the coatings increased with increase in the addition of GO in the coatings. The microstructural investigation revealed large-scale segregation of Zn-rich and Sn-rich phases in the pure SnZn coating. However, in SnZn-GO composite coating the uniform distribution of Zn phase in the Sn-rich matrix was observed. This distribution caused the early and uniform formation of ZnO, which is the corrosion product, yielding better corrosion resistance for the SnZn-GO composite coatings as compared to pure SnZn coating. A significant improvement in corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in the polarization resistance was observed in Cr coating containing graphene and in SnZn coatings containing GO.Keywords: coatings, corrosion, electrodeposition, graphene, graphene-oxide
Procedia PDF Downloads 1815136 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)
Authors: Ahmad Kayvani Fard, Yehia Manawi
Abstract:
Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation
Procedia PDF Downloads 2275135 Crack Initiation Assessment during Fracture of Heat Treated Duplex Stainless Steels
Authors: Faraj Ahmed E. Alhegagi, Anagia M. Khamkam Mohamed, Bassam F. Alhajaji
Abstract:
Duplex stainless steels (DSS) are widely employed in industry for apparatus working with sea water in petroleum, refineries and in chemical plants. Fracture of DSS takes place by cleavage of the ferrite phase and the austenite phase ductile tear off. Pop-in is an important feature takes place during fracture of DSS. The procedure of Pop-ins assessment plays an important role in fracture toughness studies. In present work, Zeron100 DSS specimens were heat treated at different temperatures, cooled and pulled to failure to assess the pop-ins criterion in crack initiation prediction. The outcome results were compared to the British Standard (BS 7448) and the ASTEM standard (E1290) for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement. Pop-in took place during specimens loading specially for those specimens heat treated at higher temperatures. The standard BS7448 was followed to check specimen validity for fractured toughness assessment by direct determination of KIC. In most cases, specimens were invalid for KIC measurement. The two procedures were equivalent only when single pop-ins were assessed. A considerable contrast in fracture toughness value between was observed where multiple pop-ins were assessed.Keywords: fracture toughness, stainless steels, pop ins, crack assessment
Procedia PDF Downloads 1255134 Supporting a Moral Growth Mindset Among College Students
Authors: Kate Allman, Heather Maranges, Elise Dykhuis
Abstract:
Moral Growth Mindset (MGM) is the belief that one has the capacity to become a more moral person, as opposed to a fixed conception of one’s moral ability and capacity (Han et al., 2018). Building from Dweck’s work in incremental implicit theories of intelligence (2008), Moral Growth Mindset (Han et al., 2020) extends growth mindsets into the moral dimension. The concept of MGM has the potential to help researchers understand how both mindsets and interventions can impact character development, and it has even been shown to have connections to voluntary service engagement (Han et al., 2018). Understanding the contexts in which MGM might be cultivated could help to promote the further cultivation of character, in addition to prosocial behaviors like service engagement, which may, in turn, promote larger scale engagement in social justice-oriented thoughts, feelings, and behaviors. In particular, college may be a place to intentionally cultivate a growth mindset toward moral capacities, given the unique developmental and maturational components of the college experience, including contextual opportunity (Lapsley & Narvaez, 2006) and independence requiring the constant consideration, revision, and internalization of personal values (Lapsley & Woodbury, 2016). In a semester-long, quasi-experimental study, we examined the impact of a pedagogical approach designed to cultivate college student character development on participants’ MGM. With an intervention (n=69) and a control group (n=97; Pre-course: 27% Men; 66% Women; 68% White; 18% Asian; 2% Black; <1% Hispanic/Latino), we investigated whether college courses that intentionally incorporate character education pedagogy (Lamb, Brant, Brooks, 2021) affect a variety of psychosocial variables associated with moral thoughts, feelings, identity, and behavior (e.g. moral growth mindset, honesty, compassion, etc.). The intervention group consisted of 69 undergraduate students (Pre-course: 40% Men; 52% Women; 68% White; 10.5% Black; 7.4% Asian; 4.2% Hispanic/Latino) that voluntarily enrolled in five undergraduate courses that encouraged students to engage with key concepts and methods of character development through the application of research-based strategies and personal reflection on goals and experiences. Moral Growth Mindset was measured using the four-item Moral Growth Mindset scale (Han et al., 2020), with items such as You can improve your basic morals and character considerably on a six-point Likert scale from 1 (strongly disagree) to 6 (strongly agree). Higher scores of MGM indicate a stronger belief that one can become a more moral person with personal effort. Reliability at Time 1 was Cronbach’s ɑ= .833, and at Time 2 Cronbach’s ɑ= .772. An Analysis of Covariance (ANCOVA) was conducted to explore whether post-course MGM scores were different between the intervention and control when controlling for pre-course MGM scores. The ANCOVA indicated significant differences in MGM between groups post-course, F(1,163) = 8.073, p = .005, R² = .11, where descriptive statistics indicate that intervention scores were higher than the control group at post-course. Results indicate that intentional character development pedagogy can be leveraged to support the development of Moral Growth Mindset and related capacities in undergraduate settings.Keywords: moral personality, character education, incremental theories of personality, growth mindset
Procedia PDF Downloads 1465133 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 1295132 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1535131 The Efficacy of Class IV Diode Laser in the Treatment of Patients with Chronic Neck Pain: A Randomized Controlled Trial
Authors: Mohamed Salaheldien Mohamed Alayat, Ahmed Mohamed Elsoudany, Roaa Abdulghani Sroge, Bayan Muteb Aldhahwani
Abstract:
Background: Neck pain is a common illness that could affect individual’s daily activities. Class IV laser with longer wavelength can stimulate tissues and penetrate more than the classic low-level laser therapy. Objectives: The aim of the study was to investigate the efficacy of class IV diode laser in the treatment of patients with chronic neck pain (CNP). Methods: Fifty-two patients participated and completed the study. Their mean age (SD) was 50.7 (6.2). Patients were randomized into two groups and treated with laser plus exercise (laser + EX) group and placebo laser plus exercise (PL+EX) group. Treatment was performed by Class IV laser in two phases; scanning and trigger point phases. Scanning to the posterior neck and shoulder girdle region with 4 J/cm2 with a total energy of 300 J applied to 75 cm2 in 4 minutes and 16 seconds. Eight trigger points on the posterior neck area were treated by 4 J/cm2 and the time of application was in 30 seconds. Both groups received exercise two times per week for 4 weeks. Exercises included range of motion, isometric, stretching, isotonic resisted exercises to the cervical extensors, lateral bending and rotators muscles with postural correction exercises. The measured variables were pain level using visual analogue scale (VAS), and neck functional activity using neck disability index (NDI) score. Measurements were taken at baseline and after 4 weeks of treatment. The level of statistical significance was set as p < 0.05. Results: There were significant decreases in post-treatment VAS and NDI in both groups as compared to baseline values. Laser + EX effectively decreased VAS (mean difference -6.5, p = 0.01) and NDI scores after (mean difference -41.3, p = 0.01) 4 weeks of treatment compared to PL + EX. Conclusion: Class IV laser combined with exercise is effective treatment for patients with CNP as compared to PL + EX therapy. The combination of laser + EX effectively increased functional activity and reduced pain after 4 weeks of treatment.Keywords: chronic neck pain, class IV laser, exercises, neck disability index, visual analogue scale
Procedia PDF Downloads 3145130 Effect of Financing Sources on Firm Performance: A Study of Indian Private Limited Small and Medium Enterprises
Authors: Denila Jinny Arulraj, Thillai Rajan Annamalai
Abstract:
This paper aims to study the relationship between funding sources and firm performance of Indian private limited SMEs using cross-sectional data obtained from a nation-wide census. A unique feature of the study is that it analyses firms that use only one form of external funding. Employing Propensity Score Matching, we find that obtaining any form of external finance has a negative influence on equivalents of profit margin and return on assets and a negative influence on asset turnover of small firms. But, the impact of institutional sources of funding on small enterprises is found to be lesser than that of non-institutional sources of funding. External/institutional sources of funding have a less negative impact on the profit margin for medium enterprises and have no significant influence on other measures of performance. The contribution of this research is the discovery of institutional sources wielding a lesser influence on performance measures considered. It is also found that institutional sources can benefit small enterprises more than medium enterprises.Keywords: external finance, institutional finance, non-institutional finance, performance, India, SME
Procedia PDF Downloads 2765129 Mind Care Assistant - Companion App
Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh
Abstract:
In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety
Procedia PDF Downloads 125128 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries
Authors: Xi Wang, Yoshio Bando
Abstract:
Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism
Procedia PDF Downloads 3525127 Exploring the 1,3-Dipolar Cycloaddition Reaction between Nitrilimine and 6-Methyl-4,5-dihydropyridazin-3(2h)-one through MEDT and Molecular Docking Analysis
Authors: Zineb Ouahdi
Abstract:
Spirocyclic compound derivatives, with their unique heterocyclic motifs, serve as a continual source of inspiration in the pursuit of developing potential therapeutic agents. These compounds are diverse in their chemical structures; some have fully saturated skeletons, while others are partially unsaturated. Nevertheless, these compounds share a characteristic feature with natural products - the presence of at least one heteroatom in one of their rings. The inclusion of a C = O dipolarophile in pyridazinones imparts an exciting aspect for 1,3-dipolar cycloaddition reactions, the focal point of our study. Our research has involved a detailed theoretical investigation of the reaction between ethyl (Z)-2-bromo-2-(2-(p-tolyl)hydrazono)acetate and 6-methyl-4,5-dihydropyridazine-3(2H)-one. This has been accomplished using the DFT/B3LYP/6-31g(d,p) method, intending to illuminate the chemical pathway of this reaction. The chemical reactivity theories we used for this purpose included FMO, TS, and local and global indices derived from conceptual DFT. The theoretical framework outlined in this study allowed us to propose a reaction mechanism for cycloaddition reactions. It also enabled the identification of the potential activities of the analyzed compounds (P1, P2, P3, P4, P5, and P6) against the major protease of the coronavirus disease (COVID-19). This was achieved using various computational tools, including AutoDock Tools, Autodock Vina, Autodock 4, and PYRX.Keywords: MEDT, pyridazin, cycloaddition, FMO, DFT, docking
Procedia PDF Downloads 1025126 Pain Intensity, Functional Disability and Physical Activity among Elderly Individuals with Chronic Mechanical Low Back Pain
Authors: Adesola Odole, Nse Odunaiya, Samuel Adewale
Abstract:
Chronic Mechanical Low Back Pain (CMLBP) is prevalent in the aging population; some studies have documented the association among pain intensity, functional disability and physical activity in the general population but very few studies in the elderly. This study was designed to investigate the association among pain intensity, functional disability and physical activity of elderly individuals with CMLBP in the University College Hospital (UCH), Ibadan, Nigeria and also to determine the difference in physical activity, pain intensity and functional disability between males and females. A total of 96 participants diagnosed with CMLBP participated in this cross-sectional survey. They were conveniently sampled from selected units in the UCH, Ibadan, Nigeria. Data on sex, marital status, occupation and duration of onset of pain of participants were obtained from the participants. The Physical Activity Scale for the Elderly, Visual Analogue Scale and Oswestry Disability Questionnaire were used to measure the physical activity, pain intensity and functional disability of the participants respectively. Data was analysed using Spearman correlation, independent t-test; and α was set at 0.05. Participants (25 males, 71 females) were aged 69.64±7.43 years. The majority (76.0%) of the participants were married, and over half (55.2%) were retirees. Participants’ mean pain intensity score was 5.21±2.03 and mean duration of onset of low back pain was 63.63 ± 90.01 months. The majority (67.6%) of the participants reported severe to crippled functional disability. Their mean functional disability was 46.91 ± 13.99. Participants’ mean physical activity score was 97.47 ± 82.55. There was significant association between physical activity and pain intensity (r = -0.21, p = 0.04). There was significant association between physical activity and functional disability (r = -0.47, p = 0.00). Male (87.26 ± 79.94) and female (101.07 ± 83.71) participants did not differ significantly in physical activity (t = 0.00, p = 0.48). In addition, male (5.48 ± 2.06) and female (5.11 ± 2.02) participants’ pain intensity were comparable (t = 0.26, p = 0.44). There was also no significant difference in functional disability (t = 0.05, p = 0.07) between male (42.56 ±13.85) and female (48.45 ± 13.81) participants. It can be concluded from this study that majority of the elderly individuals with chronic mechanical low back pain had a severe to crippled functional disability. Those who reported increased physical activity had reduced pain intensity and functional disability. Male and female elderly individuals with chronic mechanical low back pain are comparable in their pain intensity, functional disability, and physical activity. Elderly individuals with CMLBP should be educated on the importance of participating in physical activity which could reduce their pain symptoms and improve functional disability.Keywords: elderly, functional disability, mechanical low back pain, pain intensity, physical activity
Procedia PDF Downloads 3205125 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink
Procedia PDF Downloads 5025124 Effect of the Food Distribution on Household Food Security Status in Iran
Authors: Delaram Ghodsi, Nasrin Omidvar, Hassan Eini-Zinab, Arash Rashidian, Hossein Raghfar
Abstract:
Food supplementary programs are policy approaches that aim to reduce financial barriers to healthy diets and tackle food insecurity. This study aimed to evaluate the effect of the supportive section of Multidisciplinary Supplementary Program for Improvement of Nutritional Status of Children (MuPINSC) on households’ food security status and nutritional status of mothers. MuPINSC is a national integrative program in Iran that distributes supplementary food basket to malnourished or growth retarded children living in low-income families in addition to providing health services, including sanitation, growth monitoring, and empowerment of families. This longitudinal study is part of a comprehensive evaluation of the program. The study participants included 359 mothers of children aged 6 to 72 month under coverage of the supportive section of the program in two provinces of Iran (Semnan and Qazvin). Demographic and economic characteristics of families were assessed by a questionnaire. Data on food security of family was collected by locally adapted Household Food Insecurity Access Scale (HFIAS) at the baseline of the study and six month thereafter. Weight and height of mothers were measured at the baseline and end of the study and mother’s BMI was calculated. Data were analysed, using paired t-test, GEE (Generalized Estimating Equation), and Chi-square tests. Based on the findings, at the baseline, only 4.7% of families were food-secure, while 13.1%, 38.7% and, 43.5% were categorized as mild, moderate and severe food insecure. After six months follow up, the distribution of different levels of food security changed significantly (P<0.001) to 7.9%, 11.6%, 42.6%, and 38%, respectively. At the end of the study, the chance of food insecurity was significantly 20% lower than the beginning (OR=0.796; 0.653-0.971). No significant difference was observed in maternal BMI based on food security (P>0.05). The findings show that the food supplementary program for children improved household food security status in the studied households. Further research is needed to assess other factors that affect the effectiveness of this large scale program on nutritional status and household’s food security.Keywords: food security, food supplementary program, household, malnourished children
Procedia PDF Downloads 4015123 Automatic Tagging and Accuracy in Assamese Text Data
Authors: Chayanika Hazarika Bordoloi
Abstract:
This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.Keywords: CRF, morphology, tagging, tagset
Procedia PDF Downloads 1945122 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment
Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot
Abstract:
Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography
Procedia PDF Downloads 2715121 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems
Authors: Edgar Gasafi, Robert Pardemann, Linus Perander
Abstract:
For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene
Procedia PDF Downloads 2305120 From Waste to Wealth: A Future Paradigm for Plastic Management Using Blockchain Technology
Authors: Jim Shi, Jasmine Chang, Nesreen El-Rayes
Abstract:
The world has been experiencing a steadily increasing trend in both the production and consumption of plastic. The global consumer revolution should not have been possible without plastic, thanks to its salient feature of inexpensiveness and durability. But, as a two-edged sword, its durable quality has returned to haunt and even jeopardized us. That exacerbating the plastic crisis has attracted various global initiatives and actions. Simultaneously, firms are eager to adopt new technology as they witness and perceive more potential and merit of Industry 4.0 technologies. For example, Blockchain technology (BCT) is drawing the attention of numerous stakeholders because of its wide range of outstanding features that promise to enhance supply chain operations. However, from a research perspective, most of the literature addresses the plastic crisis from either environmental or social perspectives. In contrast, analysis from the data science perspective and technology is relatively scarce. To this end, this study aims to fill this gap and cover the plastic crisis from a holistic view of environmental, social, technological, and business perspectives. In particular, we propose a mathematical model to examine the inclusion of BCT to enhance and improve the efficiency on the upstream and the downstream sides of the plastic value, where the whole value chain is coordinated systematically, and its interoperability can be optimized. Consequently, the Environmental, Social, and Governance (ESG) goal and Circular Economics (CE) sustainability can be maximized.Keywords: blockchain technology, plastic, circular economy, sustainability
Procedia PDF Downloads 815119 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization
Procedia PDF Downloads 1595118 The Role of Electronic Banking Technology in the Modernization of Algerian Banking System
Authors: Azzi Mohammed Amin
Abstract:
In the last decade Algeria has investigated in a scale of economic reforms including different areas, among these; reforms in the banking system. This was mainly through the implementation of some regulations that facilitate the shift to market economy and guarantee integration into global economy. The most important new ideas that have emerged in this area are perhaps to find a possibility of integrating the so called e-banking. Based on what has already been stated, we will try in this study to highlight the significant role of electronic banking services as novel trends in the modernization and development of Algerian banks.Keywords: banking technology, Internet banks, modernization of banks, virtual banks
Procedia PDF Downloads 4395117 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 835116 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions
Authors: Varvara Roubtsova, Mohamed Chekired
Abstract:
Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics
Procedia PDF Downloads 302