Search results for: optimal capacitors placement and sizing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3633

Search results for: optimal capacitors placement and sizing

1263 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 148
1262 Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish

Authors: Saji George, Eng Khuan Seng, Christof Luda

Abstract:

Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture.

Keywords: nanotechnology, fish-vaccine, drug-delivery, halloysite-chitosan

Procedia PDF Downloads 289
1261 Optimization of the Production Processes of Biodiesel from a Locally Sourced Gossypium herbaceum and Moringa oleifera

Authors: Ikechukwu Ejim

Abstract:

This research project addresses the optimization of biodiesel production from gossypium herbaceum (cottonseed) and moringa oleifera seeds. Soxhlet extractor method using n-hexane for gossypium herbaceum (cottonseed) and ethanol for moringa oleifera were used for solvent extraction. 1250 ml of oil was realized from both gossypium herbaceum (cottonseed) and moringa oleifera seeds before characterization. In transesterification process, a 4-factor-3-level experiment was conducted using an optimal design of Response Surface Methodology. The effects of methanol/oil molar ratio, catalyst concentration (%), temperature (°C) and time (mins), on the yield of methyl ester for both cottonseed and moringa oleifera oils were determined. The design consisted of 25 experimental runs (5 lack of fit points, five replicate points, 0 additional center points and I optimality) and provided sufficient information to fit a second-degree polynomial model. The experimental results suggested that optimum conditions were as follows; cottonseed yield (96.231%), catalyst concentration (0.972%), temperature (55oC), time (60mins) and methanol/oil molar ratios (8/1) respectively while moringa oleifera optimum values were yield (80.811%), catalyst concentration (1.0%), temperature (54.7oC), time (30mins ) and methanol/oil molar ratios (8/1) respectively. This optimized conditions were validated with the actual biodiesel yield in experimental trials and literature.

Keywords: optimization, Gossypium herbaceum, Moringa oleifera, biodiesel

Procedia PDF Downloads 154
1260 Evaluation and Assessment of Bioinformatics Methods and Their Applications

Authors: Fatemeh Nokhodchi Bonab

Abstract:

Bioinformatics, in its broad sense, involves application of computer processes to solve biological problems. A wide range of computational tools are needed to effectively and efficiently process large amounts of data being generated as a result of recent technological innovations in biology and medicine. A number of computational tools have been developed or adapted to deal with the experimental riches of complex and multivariate data and transition from data collection to information or knowledge. These bioinformatics tools are being evaluated and applied in various medical areas including early detection, risk assessment, classification, and prognosis of cancer. The goal of these efforts is to develop and identify bioinformatics methods with optimal sensitivity, specificity, and predictive capabilities. The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems.

Keywords: methods, applications, transcriptional regulatory systems, techniques

Procedia PDF Downloads 132
1259 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment

Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano

Abstract:

Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.

Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power

Procedia PDF Downloads 104
1258 The Relationship between the Parameters of Laser 3D Printing of Titanium Alloy and Its Strength Properties

Authors: Lubov Magerramova, Vladimir Isakov, Michail Petrov

Abstract:

A methodology for calculating and modeling technological modes of laser 3D printing of Ti6Al4V powder alloy samples has been developed. ProXDPM320 3D printer was used. The technological model that takes into account the multifactorial influence of modes and conditions of additive cultivation on characteristics and strength properties of titanium samples has been created. Process control parameters and an order parameter, to which the others are subordinate, were established. Using the iterative method, the optimal technological parameters for the additive growth of cylindrical samples were calculated. The calculations were combined with data obtained during virtual 3D printing in the Altair Inspire software environment. The samples were subjected to short-term tensile strength tests at normal temperature on a servo-hydraulic machine “LFV-100”. As a result, deformation diagrams were constructed, and mechanical characteristics such as proportionality limit, conditional yield strength, tensile strength, elastic modulus, relative elongation, and stress at break were obtained. Comparison of these characteristics with those for the industrial alloy Ti6Al4V showed acceptable agreement. Some of the synthesized samples were subjected to laser shock treatment to increase fatigue strength. The results obtained were used to validate the mathematical model of 3D printing of titanium alloys.

Keywords: additive technology, titanium alloy, numerical simulation, strength tests

Procedia PDF Downloads 12
1257 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 559
1256 The Evaluation of Transformational Leadership Characteristics and Behaviors in Air Forces

Authors: Cuma Şimşek

Abstract:

Nowadays our globalized world is in a very rapid and sophisticated change. In the information age, notion of ‘information’ has begun to spread faster than ever also in this age, changes and transformation has gained tremendous momentum with technology boom. This continuous change and transformation, increased the competition between existing organizations and corporations. Besides, the organizations which show resistance to change has been put out of action in this competitive environment. It is not possible to sustain the existence of organizations without adapting to change and transformation by isolating itself from developments. As a consequence of improved communication and dialog possibilities by means of increasing knowledge level, there has been made a change of scene in administrative mentality, style and activation, especially in 21th century. Leaders emerge as the most important factor in this process of perception and success. At the same time it is not enough to adapt the alteration with conventional leadership abilities and behaviors. In parallel with alteration, new types of leadership are coming up. The optimal leadership type for our era and a trending topic "Transformational Leadership" is in great demand now. In this research, current situation of the Air Forces which use high-technology weapons efficiently, operates in an environment full of threats and is analyzed. It is evaluated that in order to be ready for war continuously and adjusting itself to changing terms of warfare atmosphere , Air Forces need ‘transformational leaders’ who are innovative, foreseeing and having a vision so that they can develop new methods and strategies for complex problems. Because it is the Air Force which is responsible for being the deterrent force of its country.

Keywords: transformational, change, air force, leadership

Procedia PDF Downloads 443
1255 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: quasigeoid, gravity aomalies, covariance, GGM

Procedia PDF Downloads 141
1254 First 1000 Days of Life: Mothers' Economic Hardship of Caring for Their Babies

Authors: Athena Pedro, Laura Bradfield, Mike Dare, Zandile Bantwana, Ashley Nayman

Abstract:

The purpose of the research was to explore mother’s unique experience and knowledge of mothering in the first 1000 day of their child’s life, from birth to age 2. The study used a qualitative research methodology with an exploratory research design. A sample of 12 mothers was used, comprising different racial backgrounds from low income areas in the Western Cape. The data was collected by means of semi-structured, in-depth interviews, which were transcribed verbatim, analysed using Braun’s and Clark’s (2006) six phases of thematic analysis. Some of the findings revealed that the mothers who participated in the study were consistently unable to feed their children and themselves due to profound and extreme situations of poverty, stress, and lack of infrastructural support. These mothers residing in low-income communities are not adequately supported both financially and socially and are often unable to meet the needs of their infants within the first 1000 days. Given the consequential nature of this period, it is imperative that mothers are able to access such support. Single mothers especially are in need of social and financial support. Appropriate interventions are required to assist mothers generally but more specifically, mothers who have children within the first 1000 days of life. By implementing appropriate interventions to address these needs, it will assist mothers to ensure optimal developmental growth of their children. This will positively impact the developmental trajectory of children in South Africa.

Keywords: caring, economic hardship, first one thousand days, mothers

Procedia PDF Downloads 137
1253 Downhole Logging and Dynamics Data Resolving Lithology-Related Drilling Behavior

Authors: Christopher Viens, Steve Krase

Abstract:

Terms such as “riding a hard streak”, “formation push”, and “fighting formation” are commonly used in the directional drilling world to explain BHA behavior that causes unwanted trajectory change. Theories about downhole directional tendencies are commonly speculated from various personal experiences with little merit due to the lack of hard data to reveal the actual mechanisms behind the phenomenon, leaving interpretation of the root cause up to personal perception. Understanding and identifying in real time the lithological factors that influence the BHA to change or hold direction adds tremendous value in terms reducing sliding time and targeting zones for optimal ROP. Utilizing surface drilling parameters and employing downhole measurements of azimuthal gamma, continuous inclination, and bending moment, a direct measure of the rock related directional phenomenon have been captured and quantified. Furthermore, identifying continuous zones of like lithology with consistent bit to rock interaction has value from a reservoir characterization and completions standpoint. The paper will show specific examples of lithology related directional tendencies from the Spraberry and Wolfcamp in the Delaware Basin.

Keywords: Azimuthal gamma imaging, bending moment, continuous inclination, downhole dynamics measurements, high frequency data

Procedia PDF Downloads 295
1252 Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13

Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar

Abstract:

Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).

Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey

Procedia PDF Downloads 243
1251 The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations

Authors: Carlos F. Sanz-Navarro, Sonia Fereres

Abstract:

Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials.

Keywords: atomistic simulations, thermal storage, latent heat, molten salt, ion mobility

Procedia PDF Downloads 328
1250 The Correlation between Territory Planning and Logistics Development: Methodological Approach

Authors: Ebtissem Sassi, Abdellatif Benabdelhafid, Sami Hammami

Abstract:

Congestion, pollution and space misuse are the major risks in the hinterland. Management of these risks is a major issue for all the actors intervening in territory management. A good mastery of these risks is based on the consideration of environmental and physical constraints since the implementation of a policy integrates simultaneously an efficient use, territorial resources, and financial resources which become increasingly rare. Yet, this balance can be difficult to establish simultaneously by all the actors. Indeed, every actor has often the tendency to favor these objectives in detriment to others. In this framework, we have fixed the objective of designing and achieving a model which will centralize multidisciplinary data and serve the analysis tool as well as a decision support tool. In this article, we will elaborate some methodological axes allowing the good management of the territory system through (i) determination of the structural factors of the decision support system, (ii) integration of methods tools favoring the territorial decisional process. Logistics territory geographic information system is a model dealing with this issue. The objective of this model is to facilitate the exchanges between the actors around a common question which was the research subject of human sciences researchers (geography, economy), nature sciences (ecology) as well as finding an optimal solution for simultaneous responses to all these objectives.

Keywords: complexity, territory, logistics, territory planning, conceptual model, GIS, MCA

Procedia PDF Downloads 139
1249 A New Optimization Algorithm for Operation of a Microgrid

Authors: Sirus Mohammadi, Rohala Moghimi

Abstract:

The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).

Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)

Procedia PDF Downloads 342
1248 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji

Abstract:

In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.

Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed

Procedia PDF Downloads 386
1247 Rectus Sheath Block to Extend the Effectiveness of Post Operative Epidural Analgesia

Authors: Sugam Kale, Arif Uzair Bin Mohammed Roslan, Cindy Lee, Syed Beevee Mohammed Ismail

Abstract:

Preemptive analgesia is an established concept in the modern practice of anaesthesia. To be most effective, it is best instituted earlier than the surgical stimulus and should last beyond the offset of surgically induced pain till healing is complete. Whereas the start of afferent pain blockade with regional anaesthesia is common, its effect often falls short to cover the entire period of pain impulses making their way to CNS in the post-operative period. We tried to use a combination of two regional anaesthetic techniques used sequentially to overcome this handicap. Madam S., a 56 year old lady, was scheduled for elective surgery for pancreatic cancer. She underwent laparotomy and distal pancreatectomy, splenectomy, bilateral salpingo oophorectomy, and sigmoid colectomy. Surgery was expected to be extensive, and it was presumed that the standard pain relief with PCA with opiates and oral analgesics would not be adequate. After counselling the patient pre-operative about the technique of regional anaesthesia techniques, including epidural catheterization and rectus sheath catheter placement, their benefits, and potential complications, informed consent was obtained. Epidural catheter was placed awake, and general anaesthesia was then induced. Epidural infusion of local anaesthetics was started prior to surgical incision and was continued till 60 hours into the postoperative period. Before skin closure, the surgeons inserted commercially available rectus sheath catheters bilaterally along the midline incision used for laparotomy. After 46 hours post-op, local anaesthetic infusion via these was started as bridging while the epidural infusion rate was tapered off. The epidural catheter was removed at 75 hours. Elastomeric pumps were used to provide local anaesthetic infusion with the ability to vary infusion rates. Acute pain service followed up the patient’s vital signs and effectiveness of pain relief twice daily or more frequently as required. Rectus sheath catheters were removed 137 hours post-op. The patient had good post-op analgesia with the minimal additional analgesic requirement. For the most part, the visual analog score (VAS) for pain remained at 1-3 on a scale of 1 to 10. Haemodynamics remained stable, and surgical recovery was as expected. Minimal opiate requirement after an extensive laparotomy also translates to the early return of intestinal motility. Our experience was encouraging, and we are hoping to extend this combination of two regional anaesthetic techniques to patients undergoing similar surgeries. Epidural analgesia is denser and offers excellent pain relief for both visceral and somatic pain in the first few days after surgery. As the pain intensity grows weaker, rectus sheath block and oral analgesics provide almost the same degree of pain relief after the epidural catheter is removed. We discovered that the background infusion of local anaesthetic down the rectus sheath catherter largely reduced the requirement for other classes of analgesics. We aim to study this further with a larger patient cohort and hope that it may become an established clinical practice that benefits patients everywhere.

Keywords: rectus sheath, epidural infusion, post operative analgesia, elastomeric

Procedia PDF Downloads 138
1246 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L. Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates.

Keywords: non destructive, paint coating, thickness, infrared thermography, laser, heterogeneity

Procedia PDF Downloads 642
1245 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 336
1244 Optimizing Design Works in Construction Consultant Company: A Knowledge-Based Application

Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai

Abstract:

The optimal construction design used during the execution of a construction project is a key factor in determining high productivity and customer satisfaction, however, this management process sometimes is carried out without care and the systematic method that it deserves, bringing negative consequences. This study proposes a knowledge management (KM) approach that will enable the intelligent use of experienced and acknowledged engineers to improve the management of construction design works for a project. Then a knowledge-based application to support this decision-making process is proposed and described. To define and design the system for the application, semi-structured interviews were conducted within five construction consulting organizations with the purpose of studying the way that the method’ optimizing process is implemented in practice and the knowledge supported with it. A system of an optimizing construction design works (OCDW) based on knowledge was developed then validated with construction experts. The OCDW was liked as a valuable tool for construction design works’ optimization, by supporting organizations to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The benefits are described as provided by the performance support system, reducing costs and time, improving product design quality, satisfying customer requirements, expanding the brand organization.

Keywords: optimizing construction design work, construction consultant organization, knowledge management, knowledge-based application

Procedia PDF Downloads 132
1243 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 382
1242 Educational Audit and Curricular Reforms in the Arabian Context

Authors: Irum Naz

Abstract:

In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.

Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center

Procedia PDF Downloads 190
1241 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 443
1240 Performance Evaluation of REST and GraphQL API Models in Microservices Software Development Domain

Authors: Mohamed S. M. Elghazal, Adel Aneiba, Essa Q. Shahra

Abstract:

This study presents a comprehensive comparative analysis of REST and GraphQL API models within the context of microservices development, offering empirical insights into the strengths and limitations of each approach. The research explores the effectiveness and efficiency of GraphQL versus REST, focusing on their impact on critical software quality metrics and user experience. Using a controlled experimental setup, the study evaluates key performance indicators, including response time, data transfer efficiency, and error rates. The findings reveal that REST APIs demonstrate superior memory efficiency and faster response times, particularly under high-load conditions, making them a reliable choice for performance-critical microservices. On the other hand, GraphQL excels in offering greater flexibility for data fetching but exhibits higher response times and increased error rates when handling complex queries. This research provides a nuanced understanding of the trade-offs between REST and GraphQL API interaction models, offering actionable guidance for developers and researchers in selecting the optimal API model for microservice-based applications. The insights are particularly valuable for balancing considerations such as performance, flexibility, and reliability in real-world implementations.

Keywords: REST API, GraphQL AP, microservice, software development

Procedia PDF Downloads 18
1239 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 100
1238 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 207
1237 Structural Performance of Composite Steel and Concrete Beams

Authors: Jakub Bartus

Abstract:

In general, composite steel and concrete structures present an effective structural solution utilizing full potential of both materials. As they have a numerous advantages on the construction side, they can reduce greatly the overall cost of construction, which is the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behaviour having web openings but emphasizes the influence of these openings on the total strain distribution at the level of steel bottom flange as well. The major investigation was focused on a change of structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime object. The study is devided into analytical and numerical part. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered description of imposed structural issue in a form of a finite element model (FEM) using strut and shell elements accounting for material non-linearities. As an outcome, a number of conclusions were drawn describing and explaining an effect of web opening presence on the structural performance of composite beams.

Keywords: composite beam, web opening, steel flange, totalstrain, finite element analysis

Procedia PDF Downloads 73
1236 Structural Analysis of Hole-Type Plate for Weight Lightening of Road Sign

Authors: Joon-Yeop Na, Sang-Keun Baik, Kyu-Soo Chong

Abstract:

Road sign sizes are related to their support and foundation, and the large-scale support that is generally installed at roadsides can cause inconvenience to pedestrians and damage the urban landscape. The most influential factor in determining the support and foundation of road signs is the wind load. In this study, we introduce a hole-type road sign to analyze its effects on reducing wind load. A hole-type road sign reduces the drag coefficient that is applied when considering the air and fluid resistance of a plate when the wind pressure is calculated, thus serving as an effective option for lightening the weights of road sign structures. A hole-type road sign is punctured with a perforator. Furthermore, the size of the holes and their distance is determined considering the damage to characters, the poor performance of reflective sheets, and legibility. For the calculation of the optimal specification of a hole-type road sign, we undertook a theoretical examination for reducing the wind loads on hole-type road signs, and analyzed the bending and reflectivity of sample road sign plates. The analytic results confirmed that a hole-type road sign sample that contains holes of 6 mm in diameter with a distance of 18 mm between the holes shows reflectivity closest to that of existing road signs; moreover, the average bending moment resulted in a reduction of 4.24%, and the support’s diameter is reduced by 40.2%.

Keywords: hole type, road sign, weight lightening, wind load

Procedia PDF Downloads 549
1235 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 93
1234 Introducing Global Navigation Satellite System Capabilities into IoT Field-Sensing Infrastructures for Advanced Precision Agriculture Services

Authors: Savvas Rogotis, Nikolaos Kalatzis, Stergios Dimou-Sakellariou, Nikolaos Marianos

Abstract:

As precision holds the key for the introduction of distinct benefits in agriculture (e.g., energy savings, reduced labor costs, optimal application of inputs, improved products, and yields), it steadily becomes evident that new initiatives should focus on rendering Precision Agriculture (PA) more accessible to the average farmer. PA leverages on technologies such as the Internet of Things (IoT), earth observation, robotics and positioning systems (e.g., the Global Navigation Satellite System – GNSS - as well as individual positioning systems like GPS, Glonass, Galileo) that allow: from simple data georeferencing to optimal navigation of agricultural machinery to even more complex tasks like Variable Rate Applications. An identified customer pain point is that, from one hand, typical triangulation-based positioning systems are not accurate enough (with errors up to several meters), while on the other hand, high precision positioning systems reaching centimeter-level accuracy, are very costly (up to thousands of euros). Within this paper, a Ground-Based Augmentation System (GBAS) is introduced, that can be adapted to any existing IoT field-sensing station infrastructure. The latter should cover a minimum set of requirements, and in particular, each station should operate as a fixed, obstruction-free towards the sky, energy supplying unit. Station augmentation will allow them to function in pairs with GNSS rovers following the differential GNSS base-rover paradigm. This constitutes a key innovation element for the proposed solution that encompasses differential GNSS capabilities into an IoT field-sensing infrastructure. Integrating this kind of information supports the provision of several additional PA beneficial services such as spatial mapping, route planning, and automatic field navigation of unmanned vehicles (UVs). Right at the heart of the designed system, there is a high-end GNSS toolkit with base-rover variants and Real-Time Kinematic (RTK) capabilities. The GNSS toolkit had to tackle all availability, performance, interfacing, and energy-related challenges that are faced for a real-time, low-power, and reliable in the field operation. Specifically, in terms of performance, preliminary findings exhibit a high rover positioning precision that can even reach less than 10-centimeters. As this precision is propagated to the full dataset collection, it enables tractors, UVs, Android-powered devices, and measuring units to deal with challenging real-world scenarios. The system is validated with the help of Gaiatrons, a mature network of agro-climatic telemetry stations with presence all over Greece and beyond ( > 60.000ha of agricultural land covered) that constitutes part of “gaiasense” (www.gaiasense.gr) smart farming (SF) solution. Gaiatrons constantly monitor atmospheric and soil parameters, thus, providing exact fit to operational requirements asked from modern SF infrastructures. Gaiatrons are ultra-low-cost, compact, and energy-autonomous stations with a modular design that enables the integration of advanced GNSS base station capabilities on top of them. A set of demanding pilot demonstrations has been initiated in Stimagka, Greece, an area with a diverse geomorphological landscape where grape cultivation is particularly popular. Pilot demonstrations are in the course of validating the preliminary system findings in its intended environment, tackle all technical challenges, and effectively highlight the added-value offered by the system in action.

Keywords: GNSS, GBAS, precision agriculture, RTK, smart farming

Procedia PDF Downloads 119