Search results for: boundary layer noise denoising
2258 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic
Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni
Abstract:
The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress
Procedia PDF Downloads 2582257 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems
Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran
Abstract:
Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model
Procedia PDF Downloads 5162256 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 5242255 Friction and Wear Characteristics of Pongamia Oil Based Blended Lubricant at Different Load and Sliding Distance
Authors: Yashvir Singh
Abstract:
Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non -toxic and environmental friendly. This paper outlines the friction and wear characteristics of Pongamia oil (PO) contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, PO was blended in the ratios 15, 30 and 50% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 3.8 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms were abrasive and the adhesive wear. During testing, the lowest wear was found with the addition of 15% PO, and above this contamination, the wear rate was increased considerably. With increase in load, viscosity of all the bio-lubricants increases and meets the ISO VG 100 requirement at 40 oC except PB 50. The addition of PO in the base lubricant acted as a very good lubricant additive which reduced the friction and wear scar diameter during the test. It has been concluded that the PB 15 can act as an alternative lubricant to increase the mechanical efficiency at 3.8 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.Keywords: friction, load, pongamia oil, sliding velocity, wear
Procedia PDF Downloads 3612254 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction
Authors: Sudhir Kumar Tiwari
Abstract:
The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model
Procedia PDF Downloads 3522253 Effect of Viscosity on Void Structure in Dusty Plasma
Authors: El Amine Nebbat
Abstract:
A void is a dust-free region in dusty plasma, a medium formed of electrons, ions, and charged dust (grain). This structure appears in multiple experimental works. Several researchers have developed models to understand it. Recently, Nebbat and Annou proposed a nonlinear model that describes the void in non-viscos plasma, where the particles of the dusty plasma are treated as a fluid. In fact, the void appears even in dense dusty plasma where viscosity exists through the strong interaction between grains, so in this work, we augment the nonlinear model of Nebbat and Annou by introducing viscosity into the fluid equations. The analysis of the data of the numerical resolution confirms the important effect of this parameter (viscosity). The study revealed that the viscosity increases the dimension of the void for certain dimensions of the grains, and its effect on the value of the density of the grains at the boundary of the void is inversely proportional to their radii, i.e., this density increase for submicron grains and decrease for others. Finally, this parameter reduces the rings of dust density which surround the void.Keywords: voids, dusty plasmas, variable charge, density, viscosity
Procedia PDF Downloads 572252 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly
Authors: Merve Tunay Çetin, Ali Kurşun, Erhan Çetin, Halil Aykul
Abstract:
In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.Keywords: cantilever beam, elastic stress analysis, orientation angle, thermoplastic
Procedia PDF Downloads 5012251 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1212250 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam
Authors: Geeta Partap, Nitika Chugh
Abstract:
The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.Keywords: microstretch, deflection, exponential load, Laplace transforms, residue theorem, simply supported
Procedia PDF Downloads 3112249 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories
Authors: Nabilah Ibrahim, Khaliza Musa
Abstract:
The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index
Procedia PDF Downloads 4442248 Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties
Authors: Yasemin Kaya, Ahmet N. Eraslan
Abstract:
In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges.Keywords: thermoelasticity, long tube, temperature-dependent properties, internal heating
Procedia PDF Downloads 6132247 Women Writing Group as a Mean for Personal and Social Change
Authors: Michal Almagor, Rivka Tuval-Mashiach
Abstract:
This presentation will explore the main processes identified in women writing group, as an interdisciplinary field with personal and social effects. It is based on the initial findings of a Ph.D. research focus on the intersection of group processes with the element of writing, in the context of gender. Writing as a therapeutic mean has been recognized and found to be highly effective. Additionally, a substantial amount of research reveals the psychological impact of group processes. However, the combination of writing and groups as a therapeutic tool was hardly investigated; this is the contribution of this research. In the following qualitative-phenomenological study, the experiences of eight women participating in a 10-sessions structured writing group were investigated. We used the meetings transcripts, semi-structured interviews, and the texts to analyze and understand the experience of participating in the group. The two significant findings revealed were spiral intersubjectivity and archaic level of semiotic language. We realized that the content and the process are interwoven; participants are writing, reading and discussing their texts in a group setting that enhanced self-dialogue between the participants and their own narratives and texts, as well as dialogue with others. This process includes working through otherness within and between while discovering and creating a multiplicity of narratives. A movement of increasing shared circles from the personal to the group and to the social-cultural environment was identified, forming what we termed as spiral intersubjectivity. An additional layer of findings was revealed while we listened to the resonance of the group-texts, and discourse; during this process, we could trace the semiotic level in addition to the symbolic one. We were witness to the dominant presence of the body, and primal sensuality, expressed by rhythm, sound and movements, signs of pre-verbal language. Those findings led us to a new understanding of the semiotic function as a way to express the fullness of women experience and the enabling role of writing in reviving what was repressed. The poetic language serves as a bridge between the symbolic and the semiotic. Re-reading the group materials, exposed another layer of expression, an old-new language. This approach suggests a feminine expression of subjective experience with personal and social importance. It is a subversive move, encouraging women to write themselves, as a craft that every woman can use, giving voice to the silent and hidden, and experiencing the power of performing 'my story'. We suggest that women writing group is an efficient, powerful yet welcoming way to raise the awareness of researchers and clinicians, and more importantly of the participants, to the uniqueness of the feminine experience, and to gender-sensitive curative approaches.Keywords: group, intersubjectivity, semiotic, writing
Procedia PDF Downloads 2192246 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model
Authors: Ziyad S. Haidar
Abstract:
Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology
Procedia PDF Downloads 792245 A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling
Authors: Thomas Elliot, Javier Babi Almenar, Benedetto Rugani
Abstract:
The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations.Keywords: ecological economics, ecosystem services, spatial planning, urban metabolism
Procedia PDF Downloads 3342244 Terraria AI: YOLO Interface for Decision-Making Algorithms
Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado
Abstract:
This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5
Procedia PDF Downloads 962243 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation
Authors: Fathi Soliman
Abstract:
With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction
Procedia PDF Downloads 1952242 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints
Authors: S. Alotaibi, S. Omer, Y. Su
Abstract:
The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.Keywords: electric vehicles, zero emission car, fuel economy, CO₂ footprint
Procedia PDF Downloads 1482241 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications
Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava
Abstract:
The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation
Procedia PDF Downloads 312240 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid
Authors: D. Šedivý, S. Fialová
Abstract:
The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid
Procedia PDF Downloads 3862239 Power MOSFET Models Including Quasi-Saturation Effect
Authors: Abdelghafour Galadi
Abstract:
In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.Keywords: power MOSFET, drift layer, quasi-saturation effect, SPICE model
Procedia PDF Downloads 1952238 Finding the Elastic Field in an Arbitrary Anisotropic Media by Implementing Accurate Generalized Gaussian Quadrature Solution
Authors: Hossein Kabir, Amir Hossein Hassanpour Mati-Kolaie
Abstract:
In the current study, the elastic field in an anisotropic elastic media is determined by implementing a general semi-analytical method. In this specific methodology, the displacement field is computed as a sum of finite functions with unknown coefficients. These aforementioned functions satisfy exactly both the homogeneous and inhomogeneous boundary conditions in the proposed media. It is worth mentioning that the unknown coefficients are determined by implementing the principle of minimum potential energy. The numerical integration is implemented by employing the Generalized Gaussian Quadrature solution. Furthermore, with the aid of the calculated unknown coefficients, the displacement field, as well as the other parameters of the elastic field, are obtainable as well. Finally, the comparison of the previous analytical method with the current semi-analytical method proposes the efficacy of the present methodology.Keywords: anisotropic elastic media, semi-analytical method, elastic field, generalized gaussian quadrature solution
Procedia PDF Downloads 3212237 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels
Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand
Abstract:
The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution
Procedia PDF Downloads 5322236 Temperature Profile Modelling in Flexible Pavement Design
Authors: Csaba Tóth, Éva Lakatos, László Pethő, Seoyoung Cho
Abstract:
The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling.Keywords: temperature profile, flexible pavement modeling, finite element method, temperature modeling
Procedia PDF Downloads 2682235 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness
Procedia PDF Downloads 1122234 Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation
Authors: Nima Shafaghi, Gunay Anlaş, C. Can Aydiner
Abstract:
A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation.Keywords: digital image correlation, fracture, martensitic phase transition, mode I, NiTi, transformation zone
Procedia PDF Downloads 3532233 Distangling Biological Noise in Cellular Images with a Focus on Explainability
Authors: Manik Sharma, Ganapathy Krishnamurthi
Abstract:
The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.Keywords: cellular images, genetic perturbations, deep-learning, explainability
Procedia PDF Downloads 1122232 On the Hirota Bilinearization of Fokas-Lenells Equation to Obtain Bright N-Soliton Solution
Authors: Sagardeep Talukdar, Gautam Kumar Saharia, Riki Dutta, Sudipta Nandy
Abstract:
In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain bright soliton. We have obtained bright 1-soliton, 2-soliton solutions and propose the scheme for obtaining N-soliton solution. We have used an additional parameter which is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton
Procedia PDF Downloads 1202231 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3802230 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation
Authors: W. Meron Mebrahtu, R. Absi
Abstract:
Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.Keywords: accuracy, eddy viscosity, sewers, velocity profile
Procedia PDF Downloads 1122229 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies
Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota
Abstract:
Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.Keywords: inertial forces, Von Mises stress, hollow rollers, wind turbine
Procedia PDF Downloads 354