Search results for: voice segmentation
724 Listening to Voices: A Meaning-Focused Framework for Supporting People with Auditory Verbal Hallucinations
Authors: Amar Ghelani
Abstract:
People with auditory verbal hallucinations (AVH) who seek support from mental health services commonly report feeling unheard and invalidated in their interactions with social workers and psychiatric professionals. Current mental health training and clinical approaches have proven to be inadequate in addressing the complex nature of voice hearing. Childhood trauma is a key factor in the development of AVH and can render people more vulnerable to hearing both supportive and/or disturbing voices. Lived experiences of racism, poverty, and immigration are also associated with development of what is broadly classified as psychosis. Despite evidence affirming the influence of environmental factors on voice hearing, the Western biomedical system typically conceptualizes this experience as a symptom of genetically-based mental illnesses which requires diagnosis and treatment. Overemphasis on psychiatric medications, referrals, and directive approaches to people’s problems has shifted clinical interventions away from assessing and addressing problems directly related to AVH. The Maastricht approach offers voice hearers and mental health workers an alternative and respectful starting point for understanding and coping with voices. The approach was developed by voice hearers in partnership with mental health professionals and entails an innovative method to assess and create meaning from voice hearing and related life stressors. The objectives of the approach are to help people who hear voices: (1) understand the problems and/or people the voices may represent in their history, and (2) cope with distress and find solutions to related problems. The Maastricht approach has also been found to help voice hearers integrate emotional conflicts, reduce avoidance or fear associated with AVH, improve therapeutic relationships, and increase a sense of control over internal experiences. The proposed oral presentation will be guided by a recovery-oriented theoretical framework which suggests healing from psychological wounds occurs through social connections and community support systems. The presentation will start with a brainstorming exercise to identify participants pre-existing knowledge of the subject matter. This will lead into a literature review on the relations between trauma, intersectionality, and AVH. An overview of the Maastricht approach and review of research related to its therapeutic risks and benefits will follow. Participants will learn trauma-informed coping skills and questions which can help voice hearers make meaning from their experiences. The presentation will conclude with a review of resources and learning opportunities where participants can expand their knowledge of the Hearing Voices Movement and Maastricht approach.Keywords: Maastricht interview, recovery, therapeutic assessment, voice hearing
Procedia PDF Downloads 114723 Colour Segmentation of Satellite Imagery to Estimate Total Suspended Solid at Rawa Pening Lake, Central Java, Indonesia
Authors: Yulia Chalri, E. T. P. Lussiana, Sarifuddin Madenda, Bambang Trisakti, Yuhilza Hanum
Abstract:
Water is a natural resource needed by humans and other living creatures. The territorial water of Indonesia is 81% of the country area, consisting of inland waters and the sea. The research object is inland waters in the form of lakes and reservoirs, since 90% of inland waters are in them, therefore the water quality should be monitored. One of water quality parameters is Total Suspended Solid (TSS). Most of the earlier research did direct measurement by taking the water sample to get TSS values. This method takes a long time and needs special tools, resulting in significant cost. Remote sensing technology has solved a lot of problems, such as the mapping of watershed and sedimentation, monitoring disaster area, mapping coastline change, and weather analysis. The aim of this research is to estimate TSS of Rawa Pening lake in Central Java by using the Lansat 8 image. The result shows that the proposed method successfully estimates the Rawa Pening’s TSS. In situ TSS shows normal water quality range, and so does estimation result of segmentation method.Keywords: total suspended solid (TSS), remote sensing, image segmentation, RGB value
Procedia PDF Downloads 412722 Text Data Preprocessing Library: Bilingual Approach
Authors: Kabil Boukhari
Abstract:
In the context of information retrieval, the selection of the most relevant words is a very important step. In fact, the text cleaning allows keeping only the most representative words for a better use. In this paper, we propose a library for the purpose text preprocessing within an implemented application to facilitate this task. This study has two purposes. The first, is to present the related work of the various steps involved in text preprocessing, presenting the segmentation, stemming and lemmatization algorithms that could be efficient in the rest of study. The second, is to implement a developed tool for text preprocessing in French and English. This library accepts unstructured text as input and provides the preprocessed text as output, based on a set of rules and on a base of stop words for both languages. The proposed library has been made on different corpora and gave an interesting result.Keywords: text preprocessing, segmentation, knowledge extraction, normalization, text generation, information retrieval
Procedia PDF Downloads 94721 Application of Quality Function Deployment Approach to Industrial Engineering Department of Gaziantep University
Authors: Eren Özceylan, Cihan Çetinkaya
Abstract:
Quality function deployment (QFD) is a technique to assist transform the voice of the customer into engineering characteristics for a product/service. With the difference of existing studies, QFD is applied to an educational area that is a service sector which is not a manufacturing firm. The objective of the study is to design the undergraduate program according to students’ desire and expectations. To do so, third and fourth year students of industrial engineering department of Gaziantep University are considered as customers. Some suggestions about lecturers, courses, exams and facility for how to satisfy students’ demands are presented and as a result, sharing the materials of courses is the most important requirement among others.Keywords: higher education, quality function deployment, quality house, voice of customer
Procedia PDF Downloads 437720 Vocal Advocacy: A Case Study at the First Black College Regarding Students Experiencing an Empowerment Workshop
Authors: Denise F. Brown, Melina McConatha
Abstract:
African Americans utilizing the art of vocal expressions, particularly for self-expression, has been a historical avenue of advocating for social justice and human rights. Vocal expressions can take many forms, such as singing, poetry, storytelling, and acting. Many well-known artists, politicians, leaders, and teachers used their voices to promote the causes and concerns of the African American community as well as the expression of their own experiences of being 'black' in America. The purpose of this project was to evaluate the perceptions of African American students in utilizing their voices for self-awareness, interview skills, and social change after attending a three-part workshop on vocal advocacy. This research utilized the framework of black feminism to understand empowerment in advocacy and self-expression. Students participated in learning about the power of their voices, and what purpose presence, and passion they discovered through the Immersive Voice workshop. There were three areas covered in the workshop. The first area was the power of the voice, the second area was the application of vocal passion, and the third area was applying the vocal power to express personal interest, interests of advocating for others, and confidence and speaking to others to further careers, i.e., using vocal power for job interviewing skills. The students were instructed to prepare for the workshops by completing a pre-workshop open-ended survey. There were a total of 15 students that participated. After the workshop ended, the students were instructed to complete a post-workshop survey. The surveys were assessed by evaluating both themes and codes from student's written feedback. From the pre-workshop survey, students were given a survey for them to provide feedback regarding the power of voice prior to participating in the workshops. From the student's responses, the theme (advocating for self and others) emerged as it related to student's feedback on what it means to advocate. There were three codes that led to the theme, having knowledge about advocating for self and others, gaining knowledge to advocate for self and others, and using that knowledge to advocate for self and others. After the students completed participation in the workshops, a post workshop- survey was given to the students. Students' feedback was assessed, and the same theme emerged, 'advocating for self and others.' The codes related to the theme, however, were different and included using vocal power (a term students learned during the workshop) to represent self, represent others, and obtain a job/career. In conclusion, the results of the survey showed that students still perceived advocating as speaking up for themselves and other people. After the workshop, students still continued to associate advocacy with helping themselves and helping others but were able to be more specific about how the sound of their voice could help in advocating, and how they could use their voice to represent themselves in getting a job or starting a career.Keywords: advocacy, command, self-expression, voice
Procedia PDF Downloads 110719 Foregrounding Events in Modern Sundanese: The Pragmatics of Particle-to-Active Voice Marking Shift
Authors: Rama Munajat
Abstract:
Discourse information levels may be viewed from either a background-foreground distinction or a multi-level perspective, and cross-linguistic studies on this area suggest that each information level is marked by a specific linguistic device. In this sense, Sundanese, spoken in Indonesia’s West Javanese Province, further differentiates the background and foreground information into ordinary and significant types. This paper will report an ongoing shift from particle-to-active voice marking in the way Sundanese signals foregrounding events. The shift relates to decades of contact with Bahasa Indonesia (Indonesia’s official language) and linguistic compatibility between the two surface marking strategies. Representative data analyzed include three groups of short stories in both Sundanese and Bahasa Indonesia (Indonesian) published in three periods: before 1945, 1965-2006, and 2016-2019. In the first group of Sundanese data, forward-moving events dominantly appear in particle KA (Kecap Anteuran, word-accompanying) constructions, where the KA represents different particles that co-occur with a special group of verbs. The second group, however, shows that the foregrounded events are more frequently described in active-voice forms with a subject-predicate (SP) order. Subsequently, the third offers stronger evidence for the use of the SP structure. As for the Indonesian data, the foregrounding events in the first group occur in verb-initial and passive-voice constructions, while in the second and third, the events more frequently appear in active-voice structures (subject-predicate sequence). The marking shift above suggests a structural influence from Indonesian, stemmed from generational differences among authors of the Sundanese short stories, particularly related to their education and language backgrounds. The first group of short stories – published before 1945 or before Indonesia's independence from Dutch – were written by native speakers of Sundanese who spoke Indonesian as a foreign language and went through the Dutch education system. The second group of authors, on the other hand, represents a generation of Sundanese native speakers who spoke Indonesian as a second language. Finally, the third group consists of authors who are bilingual speakers of both Sundanese and Indonesian. The data suggest that the last two groups of authors completed the Indonesian education system. With these, the use of subject-predicate sequences to denote foregrounding events began to appear more frequently in the second group and then became more dominant in those of the third. The coded data also signify that cohesion, coherence, and pragmatic purposes in Particle KA constructions are intact in their respective active-voice structure counterparts. For instance, the foregrounding events in Particle KA constructions occur in Sentence-initial KA and Pre-verbal KA forms, whereas those in the active-voice are described in Subject-Predicate (SP) and Zero-Subject active-voice patterns. Cross-language data further demonstrate that the Sentence-initial KA and the SP active-voice structures each contain an overt noun phrase (NP) co-referential with one of the entities introduced in a preceding context. Similarly, the pre-verbal KA and Zero-Subject active-voice patterns have a deleted noun phrase unambiguously referable to the only one entity previously mentioned. The presence and absence of an NP inform a pragmatic strategy to place prominence on topic/given and comment/new information, respectively.Keywords: discourse analysis, foregrounding marking, pragmatics, language contact
Procedia PDF Downloads 138718 The Use of Political Savviness in Dealing with Workplace Ostracism: A Social Information Processing Perspective
Authors: Amy Y. Wang, Eko L. Yi
Abstract:
Can vicarious experiences of workplace ostracism affect employees’ willingness to voice? Given the increasingly interdependent nature of the modern workplace in which employees rely on social interactions to fulfill organizational goals, workplace ostracism –the extent to which an individual perceives that he or she is ignored or excluded by others in the workplace– has garnered significant interest from scholars and practitioners alike. Extending beyond conventional studies that largely focus on the perspectives and outcomes of ostracized targets, we address the indirect effects of workplace ostracism on third-party employees embedded in the same social context. Using a social information processing approach, we propose that the ostracism of coworkers acts as political information that influences third-party employees in their decisions to engage in risky and discretionary behaviors such as employee voice. To make sense of and to navigate through experiences of workplace ostracism, we posit that both political understanding and political skill allow third party employees to minimize the risks and uncertainty of voicing. This conceptual model was tested by a study involving 154 supervisor-subordinate dyads of a publicly listed bio-technology firm located in Mainland China. Each supervisor and their direct subordinates composed of a work team; each team had a minimum of two subordinates and a maximum of four subordinates. Human resources used the master list to distribute the ID coded questionnaires to the matching names. All studied constructs were measured using existing scales proved effective in previous literature. Hypotheses were tested using Confirmatory Factor Analysis and Hierarchal Multiple Regression. All three hypotheses were supported which showed that employees were less likely to engage in voice behaviors when their coworkers reported having experienced ostracism in the workplace. Results also showed a significant three-way interaction between political understanding and political skill on the relationship between coworkers’ ostracism and employee voice, indicating that political savviness is a valuable resource in mitigating ostracism’s negative and indirect effects. Our results illustrated that an employee’s coworkers being ostracized indeed adversely impacted his or her own voice behavior. However, not all individuals reacted passively to the social context; rather, we found that politically savvy individuals – possessing both political understanding and political skill – and their voice behaviors were less impacted by ostracism in their work environment. At the same time, we found that having only political understanding or only political skill was significantly less effective in mitigating ostracism’s negative effects, suggesting a necessary duality of political knowledge and political skill in combatting ostracism. Organizational implications, recommendations, and future research ideas are also discussed.Keywords: employee voice, organizational politics, social information processing, workplace ostracism
Procedia PDF Downloads 140717 The Relationship between Organizational Silence and Voice with the Quality of Work Life among Employees of the Youth and Sports Departments of Tehran Province
Authors: Soodabeh Dehghan, Siavash Hamidzadeh, Naqshbandi Seyyed Salahedin, Ali Mohammad Safania
Abstract:
The present research with the aim of the relationship between organizational silence and organizational voice with quality of work-life among employees of the sport and youth departments of Tehran Province was done. The statistical population of this research includes all employees of the sport and youth departments of Tehran province, and considering the not very large number of society, the sample and society were considered to be the same, and the sample was considered as the whole number. To measure each of these variables, a questionnaire was used. The research questionnaire was presented in four sections. The results showed that, since the extension of the process of organizational silence is usually done by managers, their attitude and attitudes toward this phenomenon are prioritized and also because silence reduces learning due to lack of knowledge sharing, makes it less effective and makes changes more difficult, it is necessary to take steps to break the silence and to further urge the staff (employees) to express their beliefs (organizational voices) and to share them in the organization's fate individuals, whose beliefs are respected and so called taken into account in the organization, would be dependent on the organization and feel obliged to remain with the organization during the hardships. This affects employees' quality of work life and their satisfaction too much.Keywords: organizational silence, organizational voice, quality of work life, the sports and youth departments of Tehran province
Procedia PDF Downloads 147716 Patient-Friendly Hand Gesture Recognition Using AI
Authors: K. Prabhu, K. Dinesh, M. Ranjani, M. Suhitha
Abstract:
During the tough times of covid, those people who were hospitalized found it difficult to always convey what they wanted to or needed to the attendee. Sometimes the attendees might also not be there. In that case, the patients can use simple hand gestures to control electrical appliances (like its set it for a zero watts bulb)and three other gestures for voice note intimation. In this AI-based hand recognition project, NodeMCU is used for the control action of the relay, and it is connected to the firebase for storing the value in the cloud and is interfaced with the python code via raspberry pi. For three hand gestures, a voice clip is added for intimation to the attendee. This is done with the help of Google’s text to speech and the inbuilt audio file option in the raspberry pi 4. All the five gestures will be detected when shown with their hands via the webcam, which is placed for gesture detection. The personal computer is used for displaying the gestures and for running the code in the raspberry pi imager.Keywords: nodeMCU, AI technology, gesture, patient
Procedia PDF Downloads 167715 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 71714 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 175713 Design and Development of Automatic Onion Harvester
Authors: P. Revathi, T. Mrunalini, K. Padma Priya, P. Ramya, R. Saranya
Abstract:
During the tough times of covid, those people who were hospitalized found it difficult to always convey what they wanted to or needed to the attendee. Sometimes the attendees might also not be there. In that case, the patients can use simple hand gestures to control electrical appliances (like its set it for a zero watts bulb)and three other gestures for voice note intimation. In this AI-based hand recognition project, NodeMCU is used for the control action of the relay, and it is connected to the firebase for storing the value in the cloud and is interfaced with the python code via raspberry pi. For three hand gestures, a voice clip is added for intimation to the attendee. This is done with the help of Google’s text to speech and the inbuilt audio file option in the raspberry pi 4. All the 5 gestures will be detected when shown with their hands via a webcam which is placed for gesture detection. A personal computer is used for displaying the gestures and for running the code in the raspberry pi imager.Keywords: onion harvesting, automatic pluging, camera, raspberry pi
Procedia PDF Downloads 198712 Developed Text-Independent Speaker Verification System
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis
Procedia PDF Downloads 58711 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade
Procedia PDF Downloads 448710 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments
Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo
Abstract:
This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.Keywords: blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer
Procedia PDF Downloads 283709 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 77708 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 157707 Music in the Early Stages of Life: Considerations from Working with Groups of Mothers and Babies
Authors: Ana Paula Melchiors Stahlschmidt
Abstract:
This paper discusses the role of music as a ludic activity and constituent element of voice in the construction and consolidation of the relationship of the baby and his/her mother or caretaker, evaluating its implications in his/her psychic structure and constitution as a subject. The work was based on the research developed as part of the author’s doctoral activities carried out from her insertion in a project of the Music Department of Federal University of Rio Grande do Sul - UFRGS, which objective was the development of musical activities with groups of babies from 0 to 24 months old and their caretakers. Observations, video recordings of the meetings, audio testemonies, and evaluation tools applied to group participants were used as instruments for this research. Information was collected on the participation of 195 babies, among which 8 were more focused on through interviews with their mothers or caretakers. These interviews were analyzed based on the referential of French Discourse Analysis, Psychoanalysis, Psychology of Development and Musical Education. The results of the research were complemented by other posterior experiences that the author developed with similar groups, in a context of a private clinic. The information collected allowed the observation of the ludic and structural functions of musical activities, when developed in a structured environment, as well as the importance of the musicality of the mother’s voice to the psychical structuring of the baby, allowing his/her insertion in the language and his/her constituition as a subject.Keywords: music and babies, maternal voice, Psychoanalysis and music, psychology and music
Procedia PDF Downloads 453706 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia
Authors: A. B. Robert, Adam Pramadia, Calvin Andika
Abstract:
The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone
Procedia PDF Downloads 596705 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization
Procedia PDF Downloads 213704 Voice in Music Therapy and Adult Trauma Research: Presenting a Meta-Synthesis of Lived Experience Perspectives
Authors: Kirsten B. Hillman
Abstract:
There is a growing body of qualitative research in adult mental health and music therapy contexts which highlights user perspectives; however, only a very small sub-section of this literature pertains to people with lived experiences of psychological trauma. This paper will provide a meta-synthesis of this existing body of research, with the intention to present a cohesive overview of salient themes in this research and a platform for the under-represented voices of those with lived experience. This synthesis will be contextualised within a broader discussion of ‘Voice’ in trauma and music therapy research, considering its layered meanings: including literal expressive vocalising and musical expression, voicing after experiences of silencing, and the possibilities of experiencing self-determination and agency in therapy after trauma.Keywords: lived experience, music therapy, trauma, user perspectives
Procedia PDF Downloads 233703 Effect Analysis of an Improved Adaptive Speech Noise Reduction Algorithm in Online Communication Scenarios
Authors: Xingxing Peng
Abstract:
With the development of society, there are more and more online communication scenarios such as teleconference and online education. In the process of conference communication, the quality of voice communication is a very important part, and noise may cause the communication effect of participants to be greatly reduced. Therefore, voice noise reduction has an important impact on scenarios such as voice calls. This research focuses on the key technologies of the sound transmission process. The purpose is to maintain the audio quality to the maximum so that the listener can hear clearer and smoother sound. Firstly, to solve the problem that the traditional speech enhancement algorithm is not ideal when dealing with non-stationary noise, an adaptive speech noise reduction algorithm is studied in this paper. Traditional noise estimation methods are mainly used to deal with stationary noise. In this chapter, we study the spectral characteristics of different noise types, especially the characteristics of non-stationary Burst noise, and design a noise estimator module to deal with non-stationary noise. Noise features are extracted from non-speech segments, and the noise estimation module is adjusted in real time according to different noise characteristics. This adaptive algorithm can enhance speech according to different noise characteristics, improve the performance of traditional algorithms to deal with non-stationary noise, so as to achieve better enhancement effect. The experimental results show that the algorithm proposed in this chapter is effective and can better adapt to different types of noise, so as to obtain better speech enhancement effect.Keywords: speech noise reduction, speech enhancement, self-adaptation, Wiener filter algorithm
Procedia PDF Downloads 58702 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 111701 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 127700 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 444699 Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units
Authors: Meltem Kürtüncü, Işın Alkan
Abstract:
Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units.Keywords: lullaby, mother voice, relaxation, stress
Procedia PDF Downloads 231698 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 482697 Riding the Crest of the Wave: Inclusive Education in New Zealand
Authors: Barbara A. Perry
Abstract:
In 1996, the New Zealand government and the Ministry of Education announced that they were setting up a "world class system of inclusive education". As a parent of a son with high and complex needs, a teacher, school Principal and Disability studies Lecturer, this author will track the changes in the journey towards inclusive education over the last 20 years. Strategies for partnering with families to ensure educational success along with insights from one of those on the crest of the wave will be presented. Using a narrative methodology the author will illuminate how far New Zealand has come towards this world class system of inclusion promised and share from personal experience some of the highlights and risks in the system. This author has challenged the old structures and been part of the setting up of new structures particularly for providing parent voice and insight; this paper provides a unique view from an insider’s voice as well as a professional in the system.Keywords: disability studies, inclusive education, special education, working with families with children with disability
Procedia PDF Downloads 251696 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.Keywords: fuzzy object, fuzzy image segmentation, motion descriptors, MRI imaging, object-based image retrieval
Procedia PDF Downloads 375695 A Voice Signal Encryption Scheme Based on Chaotic Theory
Authors: Hailang Yang
Abstract:
To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)
Procedia PDF Downloads 51