Search results for: text retrieval
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1601

Search results for: text retrieval

1391 AINA: Disney Animation Information as Educational Resources

Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas

Abstract:

With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.

Keywords: information retrieval, animation, educational resources, JiTT

Procedia PDF Downloads 351
1390 Making Sense of Places: A Comparative Study of Three Contexts in Thailand

Authors: Thirayu Jumsai Na Ayudhya

Abstract:

The study of what architecture means to people in their everyday lives inadequately addresses the contextualized and holistic theoretical framework. This article succinctly presents theoretical framework obtained from the comparative study of how people experience the everyday architecture in three different contexts including 1) Bangkok CBD, 2) Phuket island old-town, and 3) Nan province old-town. The way people make sense of the everyday architecture can be addressed in four super-ordinate themes; (1) building in urban (text), (2) building in (text), (3) building in human (text), (4) and building in time (text). In this article, these super-ordinate themes were verified whether they recur in three studied-contexts. In each studied-context, the participants were divided into two groups, 1) local people, 2) visitors. Participants were asked to take photographs of the everyday architecture during the everyday routine and to participate the elicit-interview with photographs produced by themselves. Interpretative phenomenological analysis (IPA) was adopted to interpret elicit-interview data. Sub-themes emerging in each studied-context were brought into the cross-comparison among three studied- contexts. It is found that four super-ordinate themes recur with additional distinctive sub-themes. Further studies in other different contexts, such as socio-political, economic, cultural differences, are recommended to complete the theoretical framework.

Keywords: sense of place, the everyday architecture, architectural experience, the everyday

Procedia PDF Downloads 159
1389 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 137
1388 Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach

Authors: Oshin Anand, Atanu Rakshit

Abstract:

The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model.

Keywords: association mining, customer preference, frequent pattern, online reviews, text mining

Procedia PDF Downloads 392
1387 Evaluation Means in English and Russian Academic Discourse: Through Comparative Analysis towards Translation

Authors: Albina Vodyanitskaya

Abstract:

Given the culture- and language-specific nature of evaluation, this phenomenon is widely studied around the linguistic world and may be regarded as a challenge for translators. Evaluation penetrates all the levels of a scientific text, influences its composition and the reader’s attitude towards the information presented. One of the most challenging and rarely studied phenomena is the individual style of the scientific writer, which is mostly reflected in the use of evaluative language means. The evaluative and expressive potential of a scientific text is becoming more and more welcoming area for researchers, which stems in the shift towards anthropocentric paradigm in linguistics. Other reasons include: the cognitive and psycholinguistic processes that accompany knowledge acquisition, a genre-determined nature of a scientific text, the increasing public concern about the quality of scientific papers and some such. One more important issue, is the fact that linguists all over the world still argue about the definition of evaluation and its functions in the text. The author analyzes various approaches towards the study of evaluation and scientific texts. A comparative analysis of English and Russian dissertations and other scientific papers with regard to evaluative language means reveals major differences and similarities between English and Russian scientific style. Though standardized and genre-specific, English scientific texts contain more figurative and expressive evaluative means than the Russian ones, which should be taken into account while translating scientific papers. The processes that evaluation undergoes while being expressed by means of a target language are also analyzed. The author offers a target-language-dependent strategy for the translation of evaluation in English and Russian scientific texts. The findings may contribute to the theory and practice of translation and can increase scientific writers’ awareness of inter-language and intercultural differences in evaluative language means.

Keywords: academic discourse, evaluation, scientific text, scientific writing, translation

Procedia PDF Downloads 359
1386 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 108
1385 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 149
1384 The Syntactic Features of Islamic Legal Texts and Their Implications for Translation

Authors: Rafat Y. Alwazna

Abstract:

Certain religious texts are deemed part of legal texts that are characterised by high sensitivity and sacredness. Amongst such religious texts are Islamic legal texts that are replete with Islamic legal terms that designate particular legal concepts peculiar to Islamic legal system and legal culture. However, from the syntactic perspective, Islamic legal texts prove lengthy, condensed and convoluted, with little use of punctuation system, but with an extensive use of subordinations and co-ordinations, which separate the main verb from the subject, and which, of course, carry a heavy load of legal detail. The present paper seeks to examine the syntactic features of Islamic legal texts through analysing a short text of Islamic jurisprudence in an attempt at exploring the syntactic features that characterise this type of legal text. A translation of this text into legal English is then exercised to find the translation implications that have emerged as a result of the English translation. Based on these implications, the paper compares and contrasts the syntactic features of Islamic legal texts to those of legal English texts. Finally, the present paper argues that there are a number of syntactic features of Islamic legal texts, such as nominalisation, passivisation, little use of punctuation system, the use of the Arabic cohesive device, etc., which are also possessed by English legal texts except for the last feature and with some variations. The paper also claims that when rendering an Islamic legal text into legal English, certain implications emerge, such as the necessity of a sentence break, the omission of the cohesive device concerned and the increase in the use of nominalisation, passivisation, passive participles, and so on.

Keywords: English legal texts, Islamic legal texts, nominalisation, participles, passivisation, syntactic features, translation implications

Procedia PDF Downloads 248
1383 Communication through Technology: SMS Taking Most of the Time Impacting the Standard English

Authors: Nazia Sulemna, Sadia Gul

Abstract:

With the invade of mobile phones text messaging has become a popular medium of communication. Its users are multiplying with every passing day. Its use is not only limites to informal but to formal communication as well. Students are the advent users of mobile phones and of SMS as well. The present study manifests the fact that students are practicing SMS for a number of reasons and a good amount of time is spent upon it which is resulting in typographical features, graphones and rebus writing. Data was collected through questionnaires and came to the conclusion that its effect is obvious in the L2 users and in exam as well.

Keywords: text messaging, technology, exams, formal writing

Procedia PDF Downloads 746
1382 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 214
1381 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 402
1380 Developmental Trends on Initial Letter Fluency in Typically Developing Children

Authors: Sunila John, B. Rajashekhar

Abstract:

Initial letter fluency tasks are one of the simple behavioral measures to evaluate the complex nature of word retrieval ability. This task requires the participant to retrieve as many words as possible beginning with a particular letter in a fixed time frame. Though the task of verbal fluency is popular among adult clinical conditions, its role in children has been less emphasized. There exists a lack of in-depth understanding of processes underlying verbal fluency performance in typically developing children. The present study, therefore, aims to delineate the developmental trend on initial letter fluency task observed in typically developing Malayalam speaking children. The participants were aged between 5 to 10 years and categorized into three groups: Group I (class I and II, mean (SD) age years: 6.44(.78)), Group II (class III and IV, mean (SD) age years: 8.59 (.83)) and group III (class V and VI, mean (SD) age years: 10.28 (.80). On two tasks of initial letter fluency, the verbal fluency outcome measures were analyzed. The study findings revealed a distinct pattern of initial letter fluency development which may enhance its usefulness in clinical and research settings.

Keywords: children, development, initial letter fluency, word retrieval

Procedia PDF Downloads 464
1379 Google Translate: AI Application

Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh

Abstract:

Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.

Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech

Procedia PDF Downloads 159
1378 A Rational Intelligent Agent to Promote Metacognition a Situation of Text Comprehension

Authors: Anass Hsissi, Hakim Allali, Abdelmajid Hajami

Abstract:

This article presents the results of a doctoral research which aims to integrate metacognitive dimension in the design of human learning computing environments (ILE). We conducted a detailed study on the relationship between metacognitive processes and learning, specifically their positive impact on the performance of learners in the area of reading comprehension. Our contribution is to implement methods, using an intelligent agent based on BDI paradigm to ensure intelligent and reliable support for low readers, in order to encourage regulation and a conscious and rational use of their metacognitive abilities.

Keywords: metacognition, text comprehension EIAH, autoregulation, BDI agent

Procedia PDF Downloads 323
1377 Research on the Landscape of Xi'an Ancient City Based on the Poetry Text of Tang Dynasty

Authors: Zou Yihui

Abstract:

The integration of the traditional landscape of the ancient city and the poet's emotions and symbolization into ancient poetry is the unique cultural gene and spiritual core of the historical city, and re-understanding the historical landscape pattern from the poetry is conducive to continuing the historical city context and improving the current situation of the gradual decline of the poetry of the modern historical urban landscape. Starting from Tang poetry uses semantic analysis methods、combined with text mining technology, entry mining, word frequency analysis, and cluster analysis of the landscape information of Tang Chang'an City were carried out, and the method framework for analyzing the urban landscape form based on poetry text was constructed. Nearly 160 poems describing the landscape of Tang Chang'an City were screened, and the poetic landscape characteristics of Tang Chang'an City were sorted out locally in order to combine with modern urban spatial development to continue the urban spatial context.

Keywords: Tang Chang'an City, poetic texts, semantic analysis, historical landscape

Procedia PDF Downloads 72
1376 Increasing the Ability of State Senior High School 12 Pekanbaru Students in Writing an Analytical Exposition Text through Comic Strips

Authors: Budiman Budiman

Abstract:

This research aimed at describing and testing whether the students’ ability in writing analytical exposition text is increased by using comic strips at SMAN 12 Pekanbaru. The respondents of this study were the second-grade students, especially XI Science 3 academic year 2011-2012. The total number of students in this class was forty-two (42) students. The quantitative and qualitative data was collected by using writing test and observation sheets. The research finding reveals that there is a significant increase of students’ writing ability in writing analytical exposition text through comic strips. It can be proved by the average score of pre-test was 43.7 and the average score of post-test was 65.37. Besides, the students’ interest and motivation in learning are also improved. These can be seen from the increasing of students’ awareness and activeness in learning process based on observation sheets. The findings draw attention to the use of comic strips in teaching and learning is beneficial for better learning outcome.

Keywords: analytical exposition, comic strips, secondary school students, writing ability

Procedia PDF Downloads 156
1375 Investigating the Encouraging Factors for Scholarly Works Contribution towards Institutional Repository: A Case Study at a Malaysian University

Authors: Mohd Rashid bin Ab Hamid, Noor Azura binti Omar, Zainol Bin Mustafa

Abstract:

Purpose: The aim of this paper is to study the encouraging factors for scholarly works contribution towards among academicians at Malaysian university. Methods: This paper uses questionnaire for data collection on the respondents’ perceptional level on the institutional repository efforts in one of the university under study. Several encouraging factors have been identified and to be measured using descriptive statistics. The factors are related to content contribution, i.e. personal factor, professional factor, organizational factor and technological factor. Findings: The study found that all these four encouraging factors did have a relation to the contribution of scholarly works in the university by the academician. Research Limitations: This study used a case study and generalization to all Malaysian universities should be well taken care of. Practical implications: The library at the university should look into these four encouraging factors in order to enhance the contribution from academician towards the repository. Originality/value: This research paper provides basic information for the knowledge management officers in the university by endeavouring more efforts in order to attract more contributions.

Keywords: institutional repository, information retrieval, information storage and retrieval

Procedia PDF Downloads 564
1374 Improving Technical Translation Ability of the Iranian Students of Translation Through Multimedia: An Empirical Study

Authors: Dina Zakeri, Ali Aminzad

Abstract:

Multimedia-assisted teaching results in eliminating traditional training barriers, facilitating the cognition process and upgrading learning outcomes. This study attempted to examine the effects of implementing multimedia on teaching technical translation model and on the technical text translation ability of Iranian students of translation. To fulfill the purpose of the study, a total of forty-six learners were selected out of fifty-seven participants in a higher education center in Tehran based on their scores in Preliminary English Test (PET) and were divided randomly into the experimental and control groups. Prior to the treatment, a technical text translation questionnaire was devised and then approved and validated by three assistant professors of technical fields and three assistant professors of Teaching English as a Foreign Language (TEFL) at the university. This questionnaire was administered as a pretest to both groups. Control and experimental groups were trained for five successive weeks using identical course books but with a different lesson plan that allowed employing multimedia for the experimental group only. The devised and approved questionnaire was administered as a posttest to both groups at the end of the instruction. A multivariate ANOVA was run to compare the two groups’ means on the PET, pretest and posttest. The results showed the rejection of all null hypotheses of the study and revealed that multimedia significantly improved technical text translation ability of the learners.

Keywords: multimedia, multimedia-mediated teaching, technical translation model, technical text, translation ability

Procedia PDF Downloads 136
1373 Temporality, Place and Autobiography in J.M. Coetzee’s 'Summertime'

Authors: Barbara Janari

Abstract:

In this paper it is argued that the effect of the disjunctive temporality in Summertime (the third of J.M. Coetzee’s fictionalised memoirs) is two-fold: firstly, it reflects the memoir’s ambivalent, contradictory representations of place in order to emphasize the fractured sense of self growing up in South Africa during apartheid entailed for Coetzee. Secondly, it reconceives the autobiographical discourse as one that foregrounds the inherent fictionality of all texts. The memoir’s narrative is filtered through intricate textual strategies that disrupt the chronological movement of the narrative, evoking the labyrinthine ways in which the past and present intersect and interpenetrate each other. It is framed by entries from Coetzee’s Notebooks: it opens with entries that cover the years 1972–1975, and ends with a number of undated fragments from his Notebooks. Most of the entries include a short ‘memo’ at the end, added between 1999 and 2000. While the memos follow the Notebook entries in the text, they are separated by decades. Between the Notebook entries is a series of interviews conducted by Vincent, the text’s putative biographer, between 2007 and 2008, based on recollections from five people who had known Coetzee in the 1970s – a key period in John’s life as it marks both his return to South Africa after a failed emigration attempt to America, and the beginning of his writing career, with the publication of Dusklands in 1974. The relationship between the memoir’s various parts is a key feature of Coetzee’s representation of place in Summertime, which is constructed as a composite one in which the principle of reflexive referencing has to be adopted. In other words, readers have to suspend individual references temporarily until the relationships between the parts have been connected to each other. In order to apprehend meaning in the text, the disparate narrative elements have to first be tied together. In this text, then, the experience of time as ordered and chronological is ruptured. Instead, the memoir’s themes and patterns become apparent most clearly through reflexive referencing, by which relationships between disparate sections of the text are linked. The image of the fictional John that emerges from the text is a composite of this John and the author, J.M. Coetzee, and is one which embodies Coetzee’s often fraught relationship with his home country, South Africa.

Keywords: autobiography, place, reflexive referencing, temporality

Procedia PDF Downloads 83
1372 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition

Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni

Abstract:

Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.

Keywords: BEMD, breast density, contend-based, image retrieval, mammography

Procedia PDF Downloads 239
1371 Effect of Mobile Phone Text Message Reminders on Adherence to Routine Prenatal Iron/Folic Acid Supplement among Pregnant Women: A Pilot Study

Authors: Nneka U. Igboeli, Maxwell O. Adibe

Abstract:

Iron and folate supplementation in pregnancy are important interventions that prevent maternal anaemia and fetal anomaly. Thus, daily oral doses of iron and folic acid are recommended throughout pregnancy as part of antenatal care. However, low adherence has been a major drawback leading to low effectiveness of these programs. The effect of mobile text message reminders to pregnant women to take their routine medications on adherence was evaluated in this study. The first 100 women who consented to the study were recruited and randomized to either receive a text message reminder on adherence to routine medications or not. Adherence was assessed using the 8-item Modified Morisky Adherence Scale (8-MMAS). The folders of successfully recruited women were tagged with the a study number assigned to each of them. The womens’ phone numbers were collected and these were used to send text messages reminders on adhering to routine drugs only to women in the intervention group. The text messages were sent three times per week for a period of four weeks with an adherence reassessment at the one month follow-up antenatal visit for recruited women. At one month follow-up, the lost to follow-up were 6 (16%) women for the intervention group and 17 (34%) for the control group. The across group mean difference in adherence score was 0.07 (-0.96 – 1.10) at baseline and 0.3 (-0.31 – 0.92) after intervention, both insignificant at p > 0.05. The within group change were increases of 0.58 (0.00 – 1.16) (p = 0.05) from baseline for the intervention group and a 0.35 (-0.51 – 1.20) (p = 0.395) for the control group. Non-significant increase in adherence scores were recorded for both groups. However, the increase in adherence scores of women in the intervention group was greater and may be potentially transformed into more positive results if the study period is increased with possibly reduced study drop-outs shows great promise for more positive results.

Keywords: adherence, mobile phone, pregnant women, reminders

Procedia PDF Downloads 178
1370 Multimodal Sentiment Analysis With Web Based Application

Authors: Shreyansh Singh, Afroz Ahmed

Abstract:

Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.

Keywords: sentiment analysis, RNN, LSTM, word embeddings

Procedia PDF Downloads 127
1369 A Word-to-Vector Formulation for Word Representation

Authors: Sandra Rizkallah, Amir F. Atiya

Abstract:

This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.

Keywords: natural language processing, word to vector, text similarity, text mining

Procedia PDF Downloads 279
1368 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 278
1367 Translation and Ideology: New Perspectives

Authors: Hamza Salih

Abstract:

Since translation is no longer viewed as a mere replacement of linguistic codes from one language to another, it has increasingly been considered, especially with the advent of the cultural turn in the late 70's, in relation to the broader external context in which it takes place. According to scholars in the field, the translation process is determined by the political, economic and cultural values which exert external pressures on the translator. Correspondingly, the relationship between translation as an act of re-writing the original text and ideology has already been established. This paper addresses the issue of how ideology comes into play in the translational process and what strategies the translator adopts to foreground or circumvent ideological constraints. Along with this, the paper will touch upon the notions of censorship, manipulation, subversion and domestication which are deemed of relevance to this very topic. In fact, after the domination of the empirically-oriented linguistic approaches in translation studies, the relationship between translation and ideology has to be foregrounded to draw attention to the fact that the translation process is not a mere text-to-text linguistic transfer, but, on the contrary, takes place in the midst of economic, political, cultural and religious variables, which some scholars subsume under the category ideology.

Keywords: translation, language, ideology, subversion, censorship and manipulation

Procedia PDF Downloads 251
1366 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure

Authors: Jiang Niu, Yue Jiang

Abstract:

With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.

Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure

Procedia PDF Downloads 211
1365 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 171
1364 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 563
1363 Extraction of Compound Words in Malay Sentences Using Linguistic and Statistical Approaches

Authors: Zamri Abu Bakar Zamri, Normaly Kamal Ismail Normaly, Mohd Izani Mohamed Rawi Izani

Abstract:

Malay noun compound are phrases that consist of two or more nouns. The key characteristic behind noun compounds lies on its frequent occurrences within the text. Therefore, extracting these noun compounds is essential for several domains of research such as Information Retrieval, Sentiment Analysis and Question Answering. Many research efforts have been proposed in terms of extracting Malay noun compounds using linguistic and statistical approaches. Most of the existing methods have concentrated on the extraction of bi-gram noun+noun compound. However, extracting noun+verb, noun+adjective and noun+prepositional is challenging due to the difficulty of selecting an appropriate method with effective results. Thus, there is still room for improvement in terms of enhancing the effectiveness of compound word extraction. Therefore, this study proposed a combination of linguistic approach and statistical measures in order to enhance the extraction of compound words. Several preprocessing steps are involved including normalization, tokenization, and stemming. The linguistic approach that has been used in this study is Part-of-Speech (POS) tagging. In addition, a new linguistic pattern for named entities has been utilized using a list of Malays named entities in order to enhance the linguistic approach in terms of noun compound recognition. The proposed statistical measures consists of NC-value, NTC-value and NLC value.

Keywords: Compound Word, Noun Compound, Linguistic Approach, Statistical Approach

Procedia PDF Downloads 353
1362 The Use of Punctuation by Primary School Students Writing Texts Collaboratively: A Franco-Brazilian Comparative Study

Authors: Cristina Felipeto, Catherine Bore, Eduardo Calil

Abstract:

This work aims to analyze and compare the punctuation marks (PM) in school texts of Brazilian and French students and the comments on these PM made spontaneously by the students during the ongoing text. Assuming textual genetics as an investigative field within a dialogical and enunciative approach, we defined a common methodological design in two 1st year classrooms (7 years old) of the primary school, one classroom in Brazil (Maceio) and the other one in France (Paris). Through a multimodal capture system of writing processes in real time and space (Ramos System), we recorded the collaborative writing proposal in dyads in each of the classrooms. This system preserves the classroom’s ecological characteristics and provides a video recording synchronized with dialogues, gestures and facial expressions of the students, the stroke of the pen’s ink on the sheet of paper and the movement of the teacher and students in the classroom. The multimodal register of the writing process allowed access to the text in progress and the comments made by the students on what was being written. In each proposed text production, teachers organized their students in dyads and requested that they should talk, combine and write a fictional narrative. We selected a Dyad of Brazilian students (BD) and another Dyad of French students (FD) and we have filmed 6 proposals for each of the dyads. The proposals were collected during the 2nd Term of 2013 (Brazil) and 2014 (France). In 6 texts written by the BD there were identified 39 PMs and 825 written words (on average, a PM every 23 words): Of these 39 PMs, 27 were highlighted orally and commented by either student. In the texts written by the FD there were identified 48 PMs and 258 written words (on average, 1 PM every 5 words): Of these 48 PM, 39 were commented by the French students. Unlike what the studies on punctuation acquisition point out, the PM that occurred the most were hyphens (BD) and commas (FD). Despite the significant difference between the types and quantities of PM in the written texts, the recognition of the need for writing PM in the text in progress and the comments have some common characteristics: i) the writing of the PM was not anticipated in relation to the text in progress, then they were added after the end of a sentence or after the finished text itself; ii) the need to add punctuation marks in the text came after one of the students had ‘remembered’ that a particular sign was needed; iii) most of the PM inscribed were not related to their linguistic functions, but the graphic-visual feature of the text; iv) the comments justify or explain the PM, indicating metalinguistic reflections made by the students. Our results indicate how the comments of the BD and FD express the dialogic and subjective nature of knowledge acquisition. Our study suggests that the initial learning of PM depends more on its graphic features and interactional conditions than on its linguistic functions.

Keywords: collaborative writing, erasure, graphic marks, learning, metalinguistic awareness, textual genesis

Procedia PDF Downloads 163