Search results for: patent sentiment analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27969

Search results for: patent sentiment analysis

27759 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 74
27758 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region

Authors: Luisa Müting, Wisnu Harto Adiwijoyo

Abstract:

Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.

Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration

Procedia PDF Downloads 101
27757 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 176
27756 Analyzing Consumer Preferences and Brand Differentiation in the Notebook Market via Social Media Insights and Expert Evaluations

Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari

Abstract:

This study investigates consumer behavior in the notebook computer market by integrating social media sentiment analysis with expert evaluations. The rapid evolution of the notebook industry has intensified competition among manufacturers, necessitating a deeper understanding of consumer priorities. Social media platforms, particularly Twitter, have become valuable sources for capturing real-time user feedback. In this research, sentiment analysis was performed on Twitter data gathered in the last two years, focusing on seven major notebook brands. The PyABSA framework was utilized to extract sentiments associated with various notebook components, including performance, design, battery life, and price. Expert evaluations, conducted using fuzzy logic, were incorporated to assess the impact of these sentiments on purchase behavior. To provide actionable insights, the TOPSIS method was employed to prioritize notebook features based on a combination of consumer sentiments and expert opinions. The findings consistently highlight price, display quality, and core performance components, such as RAM and CPU, as top priorities across brands. However, lower-priority features, such as webcams and cooling fans, present opportunities for manufacturers to innovate and differentiate their products. The analysis also reveals subtle but significant brand-specific variations, offering targeted insights for marketing and product development strategies. For example, Lenovo's strong performance in display quality points to a competitive edge, while Microsoft's lower ranking in battery life indicates a potential area for R&D investment. This hybrid methodology demonstrates the value of combining big data analytics with expert evaluations, offering a comprehensive framework for understanding consumer behavior in the notebook market. The study emphasizes the importance of aligning product development and marketing strategies with evolving consumer preferences, ensuring competitiveness in a dynamic market. It also underscores the potential for innovation in seemingly less important features, providing companies with opportunities to create unique selling points. By bridging the gap between consumer expectations and product offerings, this research equips manufacturers with the tools needed to remain agile in responding to market trends and enhancing customer satisfaction.

Keywords: consumer behavior, customer preferences, laptop industry, notebook computers, social media analytics, TOPSIS

Procedia PDF Downloads 21
27755 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies

Authors: Kanika Sood, Sijie Shang

Abstract:

A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.

Keywords: bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, natural language processing, online learning, sentiment analysis, teaching pedagogy

Procedia PDF Downloads 75
27754 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models

Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev

Abstract:

Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.

Keywords: NLP, benchmak, bert, vectorization

Procedia PDF Downloads 52
27753 The Usage of Negative Emotive Words in Twitter

Authors: Martina Katalin Szabó, István Üveges

Abstract:

In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.

Keywords: gender differences, negative emotive words, semantic changes over time, twitter

Procedia PDF Downloads 204
27752 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 191
27751 Electrochemotherapy of Portal Vein Tumor Thrombus as Dowstaging to Liver Transplantation

Authors: Luciano Tarantino, Emanuele Balzano, Paolo Tarantino, Riccardo Aurelio Nasto, Aurelio Nasto

Abstract:

Liver transplantation (OLT) is contraindicate in Portal Vein tumor Thrombosis (PVTT) from Hepatocellular Carcinoma at hepatic hilum(pH-HCC) Surgery,Thermal ablation and chemotherapy show poorer outcomes Electrochemotherapy (ECT) has been successfully used in patients with pH-HCC with PVTT. We report the results of ECT as downstaging aimed to definitive cure by OLT. F.P. 53 years HBV related Cirrhosis Child-Pugh B7 class; EGDS F2 aesophageal Varices. Diabetes. April 2016 : Enhanced Computed Tomography (CT) detected HCC(n.3 nodules in VII-VIII-VI;diameter range=25 cm) and PVTT of right portal vein. The patient was considered ineligible for OLT. May 2016: first ablation session with percutaneous Radiofrequency-ablation(RFA) of 3 HCC-nodules . August 2016: second ablation session with ECT of PVTT. CT october 2016: disappearance of PVTT and patent right portal vein. No intraparenchymal recurrence. CT march 2017: No recurrence in portal vein and in the left lobe. local recurrence in the VII-VIII segments. May 2017 : transarterial chemoembolization (TACE) of right lobe recurrences. CT October 2017: patent right portal vein. No recurrence. The patient was reconsidered for OLT. He underwent OLT in April 2018. At 36-months follow-up , no intrahepatic recurrence of HCC occurred. March 2021: enhanced CT and PET/CT detected a single small nodule (1.5 cm) uptaking tracer in the left upper pulmonary lobe, no hepatic recurrence . CT-guided FNB showed metastasis from HCC . June 2021: left lung upper lobectomy . At the current time the patient is alive and recurrence-free at 64 months follow-up. ECT Could be aneffective technique as pre-OLT dowstaging in HCC with PVTT.

Keywords: liver tumor ablation, interventional ultrasound, electrochemotherapy, liver transplantation

Procedia PDF Downloads 116
27750 The International Monetary Fund’s Treatment Towards Argentina and Brazil During Financial Negotiations for Their First Adjustment Programs, 1958-64

Authors: Fernanda Conforto de Oliveira

Abstract:

The International Monetary Fund (IMF) has a central role in global financial governance as the world’s leading crisis lender. Its practice of conditional lending – conditioning loans on the implementation of economic policy adjustments – is the primary lever by which the institution interacts with and influences the policy choices of member countries and has been a key topic of interest to scholars and public opinion. However, empirical evidence about the economic and (geo)political determinants of IMF lending behavior remains inconclusive, and no model that explains IMF policies has been identified. This research moves beyond panel analysis to focus on financial negotiations for the first IMF programs in Argentina and Brazil in the early post-war period. It seeks to understand why negotiations achieved distinct objectives: Argentinean officials cooperated and complied with IMF policies, whereas their Brazilian counterparts hesitated. Using qualitative and automated text analysis, this paper analyses the hypothesis about whether a differential IMF treatment could help to explain these distinct outcomes. This paper contributes to historical studies on IMF-Latin America relations and the broader literature in international policy economy about IMF policies.

Keywords: international monetary fund, international history, financial history, Latin American economic history, natural language processing, sentiment analysis

Procedia PDF Downloads 62
27749 Sensory Gap Analysis on Port Wine Promotion and Perceptions

Authors: José Manue Carvalho Vieira, Mariana Magalhães, Elizabeth Serra

Abstract:

The Port Wine industry is essential to Portugal because it carries a tangible cultural heritage and for social and economic reasons. Positioned as a luxury product, brands need to pay more attention to the new generation's habits, preferences, languages, and sensory perceptions. Healthy lifestyles, anti-alcohol campaigns, and digitalisation of their buying decision process need to be better understood to understand the wine market in the future. The purpose of this study is to clarify the sensory perception gap between Port Wine descriptors promotion and the new generation's perceptions to help wineries to align their strategies. Based on the interpretivist approach - multiple methods and techniques (mixed-methods), different world views and different assumptions, and different data collection methods and analysis, this research integrated qualitative semi-structured interviews, Port Wine promotion contents, and social media perceptions mined by Sentiment Analysis Enginius algorithm. Findings confirm that Port Wine CEOs' strategies, brands' promotional content, and social perceptions are not sufficiently aligned. The central insight for Port Wine brands' managers is that there is a long and continuous work of understanding and associating their descriptors with the most relevant perceptual values and criteria of their targets to reposition (when necessary) and sustainably revitalise their brands. Finally, this study hypothesised a sensory gap that leads to a decrease in consumption, trying to find recommendations on how to transform it into an advantage for a better attraction towards the young age group (18-25).

Keywords: port wine, consumer habits, sensory gap analysis, wine marketing

Procedia PDF Downloads 244
27748 Models of State Organization and Influence over Collective Identity and Nationalism in Spain

Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel

Abstract:

The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.

Keywords: models of organization of the state, nationalism, collective identity, Spain, political parties

Procedia PDF Downloads 441
27747 The Korean Neo-Confucian Ideal of Pluralism and Han

Authors: Hyeon Sop Baek

Abstract:

This paper will investigate the Korean concept of han and suggest that the feeling of han is essentially inseparable from the central project of the Korean neo-Confucian philosophical tradition. Han is a complex sentiment, but one may characterize it as an internally directed complex of sentiments of frustration, sadness, and anger. In particular, this paper aims to demonstrate that the Korean neo-Confucian project's ultimate objective was to build a pluralistic world – where different people can coexist together in harmony and participate in building the ideal world. Nevertheless, the confrontation between the neo-Confucian idea – that every person has the intrinsic potential to be moral – and the bleakness of reality that made their objective virtually impossible to achieve led to the formation and development of the feeling of han. The paper will first examine the concept of han and what it entails and then investigate the core elements of Korean neo-Confucianism, examining the works of Korean neo-Confucians, including Toegye, Yulgok, and Jeong Dojeon. Furthermore, the concept of plurality will be drawn from the political theory of Hannah Arendt. While the Arendtian and Korean neo-Confucian philosophies are ultimately different, this paper will contend that the two philosophies' broader aims share many resonating points. Specifically, within both philosophies, the human plurality – that all humans are equal but not the same – underlies the foundation of an ideal political realm. From there, an argument that the difficulty faced by the neo-Confucians in Korea in constructing a polity based on the ideal of respect and human moral capacity ultimately contributed to the emergence of the sentiment han will be presented. In conclusion, this paper will demonstrate that the ultimate objectives of Korean Confucianism lie in closing the gap between the ideal and reality in moral cultivation as well as its political project of building an ideal, pluralistic world, and han emerges from the realization of the difficulty of achieving that goal. Finally, this paper will contest that han needs not be perceived negatively, and han can be a driving force for political participation in the contemporary democratic, pluralistic society.

Keywords: Korea, Confucianism, neo-Confucianism, philosophy, han, Korean philosophy

Procedia PDF Downloads 139
27746 The Georgians’ Discourses of National Identity in the Context of Europeanisation

Authors: Lia Tsuladze

Abstract:

The paper discusses the Georgians’ online discourses of national identity in the context of Europeanisation focusing on two periods - initialing of the EU-Georgia Association Agreement in November 2013 and signing it in June 2014. Discussing how the Georgians’ aspiration to integrate with the EU is combined with their perception of Europeanisation as a threat to the national identity, the author explores how the national sentiment is expressed in the above discourses while performed for the local vs. international audiences.

Keywords: Europeanisation, frontstage, backstage discourses, Georgia, national identity

Procedia PDF Downloads 505
27745 Anti-Western Sentiment amongst Arabs and How It Drives Support for Russia against Ukraine

Authors: Soran Tarkhani

Abstract:

A glance at social media shows that Russia's invasion of Ukraine receives considerable support among Arabs. This significant support for the Russian invasion of Ukraine is puzzling since most Arab leaders openly condemned the Russian invasion through the UN ES‑11/4 Resolution, and Arabs are among the first who experienced the devastating consequences of war firsthand. This article tries to answer this question by using multiple regression to analyze the online content of Arab responses to Russia's invasion of Ukraine on seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. The article argues that the underlying reason for this Arab support is a reaction to the common anti-Western sentiments among Arabs. The empirical result from regression analysis supports the central arguments and uncovers the motivations behind the endorsement of the Russian invasion of Ukraine and the opposing Ukraine by many Arabs.

Keywords: Ukraine, Russia, Arabs, Ukrainians, Russians, Putin, invasion, Europe, war

Procedia PDF Downloads 74
27744 Combining Experiments and Surveys to Understand the Pinterest User Experience

Authors: Jolie M. Martin

Abstract:

Running experiments while logging detailed user actions has become the standard way of testing product features at Pinterest, as at many other Internet companies. While this technique offers plenty of statistical power to assess the effects of product changes on behavioral metrics, it does not often give us much insight into why users respond the way they do. By combining at-scale experiments with smaller surveys of users in each experimental condition, we have developed a unique approach for measuring the impact of our product and communication treatments on user sentiment, attitudes, and comprehension.

Keywords: experiments, methodology, surveys, user experience

Procedia PDF Downloads 309
27743 Visualisation in Health Communication: Taking Weibo Interaction in COVD19 as the Example

Authors: Zicheng Zhang, Linli Zhang

Abstract:

As China's biggest social media platform, Weibo has taken on essential health communication responsibilities during the pandemic. This research takes 105 posters in 15 health-related official Weibo accounts as the analysis objects to explore COVID19 health information communication and visualisation. First, the interaction between the audiences and Weibo, including forwarding, comments, and likes, is statistically analysed. The comments about the information design are extracted manually, and then the sentiment analysis is carried out to verdict audiences' views about the poster's design. The forwarding and comments are quantified as the attention index for a reference to the degree of likes. In addition, this study also designed an evaluation scale based on the standards of Health Literacy Resource by the Centers for Medicare& Medicaid Services (US). Then designers scored all selected posters one by one. Finally, combining the data of the two parts, concluded that: 1. To a certain extent, people think that the posters do not deliver substantive and practical information; 2. Non-knowledge posters(i.e., cartoon posters) gained more Forwarding and Likes, such as Go, Wuhan poster; 3. The analysis of COVID posters is still mainly picture-oriented, mainly about encouraging people to overcome difficulties; 4. Posters for pandemic prevention usually contain more text and fewer illustrations and do not clearly show cultural differences. In conclusion, health communication usually involves a lot of professional knowledge, so visualising that knowledge in an accessible way for the general public is challenging. The relevant posters still have the problems of lack of effective communication, superficial design, and insufficient content accessibility.

Keywords: weibo, visualisation, covid posters, poster design

Procedia PDF Downloads 126
27742 The Strategy of Traditional Religious Culture Tourism: Taking Taiwan Minhsiung Infernal Lord Festival for Example

Authors: Ching-Yi Wang

Abstract:

The purpose of this study is to explore strategies for integrate Minhsiung environments and cultural resources for Infernal Lord Festival. Minhsiung Infernal Lord Festival is one of the famous religious event in Chia-Yi County, Taiwan. This religious event and the life of local residents are inseparable. Minhsiung Infernal Lord Festival has a rich cultural ceremonies meaning and sentiment of local concern. This study apply field study, document analysis and interviews to analyze Minhsiung Township’s featured attractions and folklore events. The research results reveal the difficulties and strategies while incorporating culture elements into culture tourism. This study hopes to provide innovative techniques for the purpose of prolonging the feasibility of future development of the tradition folk culture.

Keywords: Taiwan folk culture, Minhsiung Infernal Lord Festival, religious tourism, folklore, cultural tourism

Procedia PDF Downloads 339
27741 Pharmaceutical Evaluation of Five Different Generic Brands of Prednisolone

Authors: Asma A. Ben Ahmed, Hajer M. Alborawy, Alaa A. Mashina, Pradeep K. Velautham, Abdulmonem Gobassa, Emhemmed Elgallal, Mohamed N. El Attug

Abstract:

Generic medicines are those where patent protection has expired, and which may be produced by manufacturers other than the innovator company. Use of generic medicines has been increasing in recent years, primarily as a cost saving measure in healthcare provision. Generic medicines are typically 20 – 90 % cheaper than originator equivalents. Physicians often continue to prescribe brand-name drugs to their patients even when less expensive pharmacologically equivalent generic drugs are available. Because generics are less expensive than their brand-name counterparts, the cost-savings to the patient is not the only factor that physicians consider when choosing between generic and brand-name drugs. Unfortunately Physicians in general and Libyan Physicians in particular tend to prescribe brand-name drugs, even without evidence of their therapeutic superiority, because neither they nor their insured patients bear these drugs’ increased cost with respect to generic substitutes. This study is to compare the quality of five different prednisolone tablets of the same strength from different companies under different trade names: Julphar, October pharma, Akums, Actavis, Pfizer compared them with pure prednisolone reference (BPCRS).

Keywords: quality control, pharmaceutical analysis, generic medicines, prednisolone

Procedia PDF Downloads 512
27740 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence

Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello

Abstract:

Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.

Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care

Procedia PDF Downloads 74
27739 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 457
27738 Locket Application

Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah

Abstract:

Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.

Keywords: locket, app, machine learning, connect

Procedia PDF Downloads 44
27737 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 103
27736 Licensing in a Hotelling Model with Quadratic Transportation Costs

Authors: Fehmi Bouguezzi

Abstract:

This paper studies optimal licensing regimes in a linear Hotelling model where firms are located at the end points of the city and where the transportation cost is not linear but quadratic. We study for that a more general cost function and we try to compare the findings with the results of the linear cost. We find the same optimal licensing regimes. A per unit royalty is optimal when innovation is not drastic and no licensing is better when innovation is drastic. We also find that no licensing is always better than fixed fee licensing.

Keywords: Hotelling model, technology transfer, patent licensing, quadratic transportation cost

Procedia PDF Downloads 347
27735 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 330
27734 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 186
27733 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases

Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal

Abstract:

This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.

Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare

Procedia PDF Downloads 110
27732 Does Indian Intellectual Property Policy Affect the U. S. Pharmaceutical Industry? A Comparative Study of Pfizer and Ranbaxy Laboratories in Regards to Trade Related Aspects of Intellectual Property Rights

Authors: Alina Hamid Bari

Abstract:

Intellectual Property (IP) policies of a country have a huge impact on the pharmaceutical industry as this industry is all about patents. Developed countries have used IP protection to boost their economy; developing countries are concerned about access to medicine for poor people. U.S. company, Pfizer had a monopoly for 14 years for Lipitor and it all came to end when Pfizer decided to operate in India. This research will focus at the effects of Indian IP policies on USA by comparing Pfizer & Ranbaxy with regards to Trade Related Aspects of Intellectual Property Rights. For this research inductive approach has been used. Main source of material is Annual reports, theory based on academic books and articles along with rulings of court, policy statements and decisions, websites and newspaper articles. SWOT analysis is done for both Pfizer & Ranbaxy. The main comparison was done by doing ratio analysis and analyses of annual reports for the year 2011-2012 for Pfizer and Ranbaxy to see the impact on their profitability. This research concludes that Indian intellectual laws do affect the profitability of the U.S. pharmaceutical industry which can in turn have an impact on the US economy. These days India is only granting patents on products which it feels are deserving of it. So the U.S. companies operating in India have to defend their invention to get a patent. Thus, to operate in India and maintain monopoly in market, US firms have to come up with different strategies.

Keywords: atorvastatin, India, intellectual property, lipitor, Pfizer, pharmaceutical industry, Ranbaxy, TRIPs, U.S.

Procedia PDF Downloads 474
27731 Intellectual Property Protection of CRISPR Related Technologies

Authors: Zheng Miao, Dennis Fernandez

Abstract:

CRISPR research has the potential to completely transform life science, agriculture, live-stock and the health care industry. The Intellectual Property derived from its research has raised significant attention in the academic as well as the biopharmaceutical industry culminating an urgent need for strategic IP protection. We review the rudimentary concepts and key competitors of CRISPR technologies as well as the paramount strategies for intellectual property protection. Further, we elaborate on prosecution issues related to CRISPR patents as well as possible solutions to various patent laws, interferences and litigation. Finally, we address how the bioinformatics of the CRISPR technology begs an inquiry into issues of privacy and a host of ethical concerns.

Keywords: bioinformatics, CRISPR, biotechnology, intellectual property

Procedia PDF Downloads 250
27730 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 407