Search results for: optimization system design
28080 Optimization of Oxygen Plant Parameters Simulating with MATLAB
Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki
Abstract:
Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB
Procedia PDF Downloads 32228079 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation
Procedia PDF Downloads 14928078 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator
Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi
Abstract:
With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.Keywords: offshore wind generator, PMSM, PSO optimization, design optimization
Procedia PDF Downloads 15528077 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm
Authors: Roya Ahmadi Ahangar, Hamid Madadyari
Abstract:
The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.Keywords: load-frequency control, multi zone, robust PID controller, wind generation
Procedia PDF Downloads 30328076 Simulation and Optimization of an Annular Methanol Reformer
Authors: Shu-Bo Yang, Wei Wu, Yuan-Heng Liu
Abstract:
This research aims to design a heat-exchanger type of methanol reformer coupled with a preheating design in gPROMS® environment. The endothermic methanol steam reforming reaction (MSR) and the exothermic preferential oxidation reaction (PROX) occur in the inner tube and the outer tube of the reformer, respectively. The effective heat transfer manner between the inner and outer tubes is investigated. It is verified that the countercurrent-flow type reformer provides the higher hydrogen yield than the cocurrent-flow type. Since the hot spot temperature appears in the outer tube, an improved scheme is proposed to suppress the hot spot temperature by splitting the excess air flowing into two sites. Finally, an optimization algorithm for maximizing the hydrogen yield is employed to determine optimal operating conditions.Keywords: methanol reformer, methanol steam reforming, optimization, simulation
Procedia PDF Downloads 33228075 Durability Analysis of a Knuckle Arm Using VPG System
Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee
Abstract:
A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)
Procedia PDF Downloads 41928074 Cuckoo Search (CS) Optimization Algorithm for Solving Constrained Optimization
Authors: Sait Ali Uymaz, Gülay Tezel
Abstract:
This paper presents the comparison results on the performance of the Cuckoo Search (CS) algorithm for constrained optimization problems. For constraint handling, CS algorithm uses penalty method. CS algorithm is tested on thirteen well-known test problems and the results obtained are compared to Particle Swarm Optimization (PSO) algorithm. Mean, best, median and worst values were employed for the analyses of performance.Keywords: cuckoo search, particle swarm optimization, constrained optimization problems, penalty method
Procedia PDF Downloads 55728073 Design and Analysis of Solar Powered Plane
Authors: Malarvizhi, Venkatesan
Abstract:
This paper summarizes about the design and optimization of solar powered unmanned aerial vehicle. The purpose of this research is to increase the range and endurance. It can be used for environmental research, aerial photography, search and rescue mission and surveillance in other planets. The ultimate aim of this research is to design and analyze the solar powered plane in order to detect lift, drag and other parameters by using cfd analysis. Similarly the numerical investigation has been done to compare the results of earth’s atmosphere to the mars atmosphere. This is the approach made to check whether the solar powered plane is possible to glide in the planet mars by using renewable energy (i.e., solar energy).Keywords: optimization, range, endurance, surveillance, lift and drag parameters
Procedia PDF Downloads 46028072 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm
Authors: Jan Busch, Peter Nyhuis
Abstract:
Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented.Keywords: aerodynamic feeding system, genetic algorithm, multi-objective optimization, workpiece orientation
Procedia PDF Downloads 57728071 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution
Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino
Abstract:
This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization
Procedia PDF Downloads 13628070 Multiobjective Economic Dispatch Using Optimal Weighting Method
Authors: Mandeep Kaur, Fatehgarh Sahib
Abstract:
The purpose of economic load dispatch is to allocate the required load demand between the available generation units such that the cost of operation is minimized. It is an optimization problem to find the most economical schedule of the generating units while satisfying load demand and operational constraints. The multiobjective optimization problem in which the engineer’s goal is to maximize or minimize not a single objective function but several objective functions simultaneously. The purpose of multiobjective problems in the mathematical programming framework is to optimize the different objective functions. Many approaches and methods have been proposed in recent years to solve multiobjective optimization problems. Weighting method has been applied to convert multiobjective optimization problems into scalar optimization. MATLAB 7.10 has been used to write the code for the complete algorithm with the help of genetic algorithm (GA). The validity of the proposed method has been demonstrated on a three-unit power system.Keywords: economic load dispatch, genetic algorithm, generating units, multiobjective optimization, weighting method
Procedia PDF Downloads 15028069 Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm
Authors: Khaled Ben Oualid Medani, Samir Sayah
Abstract:
The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.Keywords: optimal reactive power dispatch, power system analysis, real power loss minimization, contingency condition, metaheuristic technique, whale optimization algorithm
Procedia PDF Downloads 12128068 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.Keywords: renewable energies, hybrid systems, optimization, operation control
Procedia PDF Downloads 37928067 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization
Authors: Xiongxiong You, Zhanwen Niu
Abstract:
Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms
Procedia PDF Downloads 14128066 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method
Authors: Amara Prakasa Rao, N. V. S. N. Sarma
Abstract:
This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system
Procedia PDF Downloads 39428065 Design of the Ubiquitous Cloud Learning Management System
Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema
Abstract:
This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system
Procedia PDF Downloads 52028064 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers
Authors: Wenjuan Du
Abstract:
The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.Keywords: phase compensation method, power system small-signal stability, power system stabilizer
Procedia PDF Downloads 64028063 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 10028062 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers
Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho
Abstract:
In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modeling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.Keywords: plate heat exchanger, optimization, modeling, simulation
Procedia PDF Downloads 51828061 Finite Element Analysis and Design Optimization of Stent and Balloon System
Authors: V. Hashim, P. N. Dileep
Abstract:
Stent implantation is being seen as the most successful method to treat coronary artery diseases. Different types of stents are available in the market these days and the success of a stent implantation greatly depends on the proper selection of a suitable stent for a patient. Computer numerical simulation is the cost effective way to choose the compatible stent. Studies confirm that the design characteristics of stent do have great importance with regards to the pressure it can sustain, the maximum displacement it can produce, the developed stress concentration and so on. In this paper different designs of stent were analyzed together with balloon to optimize the stent and balloon system. Commercially available stent Palmaz-Schatz has been selected for analysis. Abaqus software is used to simulate the system. This work is the finite element analysis of the artery stent implant to find out the design factors affecting the stress and strain. The work consists of two phases. In the first phase, stress distribution of three models were compared - stent without balloon, stent with balloon of equal length and stent with balloon of extra length than stent. In second phase, three different design models of Palmaz-Schatz stent were compared by keeping the balloon length constant. The results obtained from analysis shows that, the design of the strut have strong effect on the stress distribution. A design with chamfered slots found better results. The length of the balloon also has influence on stress concentration of the stent. Increase in length of the balloon will reduce stress, but will increase dog boning effect.Keywords: coronary stent, finite element analysis, restenosis, stress concentration
Procedia PDF Downloads 62328060 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering
Procedia PDF Downloads 51428059 Reliability Enhancement by Parameter Design in Ferrite Magnet Process
Abstract:
Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method
Procedia PDF Downloads 51728058 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications
Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka
Abstract:
The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor
Procedia PDF Downloads 52128057 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 11128056 Design of Intelligent Scaffolding Learning Management System for Vocational Education
Authors: Seree Chadcham, Niphon Sukvilai
Abstract:
This study is the research and development which is intended to: 1) design of the Intelligent Scaffolding Learning Management System (ISLMS) for vocational education, 2) assess the suitability of the Design of Intelligent Scaffolding Learning Management System for Vocational Education. Its methods are divided into 2 phases. Phase 1 is the design of the ISLMS for Vocational Education and phase 2 is the assessment of the suitability of the design. The samples used in this study are work done by 15 professionals in the field of Intelligent Scaffolding, Learning Management System, Vocational Education, and Information and Communication Technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ISLMS for vocational education consists of 2 main components which are: 1) the Intelligent Learning Management System for Vocational Education, 2) the Intelligent Scaffolding Management System. The result of the system suitability assessment from the professionals is in the highest range.Keywords: intelligent, scaffolding, learning management system, vocational education
Procedia PDF Downloads 79528055 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 31628054 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.Keywords: topology optimization, BESO method, p-norm, fatigue constraint
Procedia PDF Downloads 29528053 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design
Authors: Sebastian Kehne, Alexander Epple, Werner Herfs
Abstract:
A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design
Procedia PDF Downloads 28628052 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers
Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer
Abstract:
Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger
Procedia PDF Downloads 39928051 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem
Authors: Takahiro Hino, Michiharu Maeda
Abstract:
Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem
Procedia PDF Downloads 552