Search results for: graph representation of circuit networks
4742 Modeling of Bioelectric Activity of Nerve Cells Using Bond Graph Method
Authors: M. Ghasemi, F. Eskandari, B. Hamzehei, A. R. Arshi
Abstract:
Bioelectric activity of nervous cells might be changed causing by various factors. This alteration can lead to unforeseen circumstances in other organs of the body. Therefore, the purpose of this study was to model a single neuron and its behavior under an initial stimulation. This study was developed based on cable theory by means of the Bond Graph method. The numerical values of the parameters were derived from empirical studies of cellular electrophysiology experiments. Initial excitation was applied through square current functions, and the resulted action potential was estimated along the neuron. The results revealed that the model was developed in this research adapted with the results of experimental studies and demonstrated the electrical behavior of nervous cells properly.Keywords: bond graph, stimulation, nervous cells, modeling
Procedia PDF Downloads 4294741 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 664740 Robust Diagnosis Efficiency by Bond-Graph Approach
Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi
Abstract:
This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR
Procedia PDF Downloads 3054739 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit
Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu
Abstract:
This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon
Procedia PDF Downloads 5974738 Social and Cognitive Stress Impact on Neuroscience and PTSD
Authors: Sadra Abbasi
Abstract:
The complex connection between psychological stress and the onset of different diseases has been an ongoing issue in the mental health field for a long time. Multiple studies have demonstrated that long-term stress can greatly heighten the likelihood of developing health issues like heart disease, cancer, arthritis, and severe depression. Recent research in cognitive science has provided insight into the intricate processes involved in posttraumatic stress disorder (PTSD), suggesting that distinct memory systems are accountable for both vivid reliving and normal autobiographical memories of traumatic incidents, as proposed by dual representation theory. This theory has important consequences for our comprehension of the neural mechanisms involved in fear and behavior related to threats, highlighting the amygdala-hippocampus-medial prefrontal cortex circuit as a crucial component in this process. This particular circuit, extensively researched in behavioral neuroscience, is essential for regulating the body's reactions to stress and trauma. This review will examine how incorporating a modern neuroscience viewpoint into an integrative case formulation offers a current way to comprehend the intricate connections among psychological stress, trauma, and disease.Keywords: social, cognitive, stress, neuroscience, behavior, PTSD
Procedia PDF Downloads 364737 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1274736 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships
Authors: Jake Gonzalez, Tommy Dang
Abstract:
This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights
Procedia PDF Downloads 614735 Understanding Health Behavior Using Social Network Analysis
Authors: Namrata Mishra
Abstract:
Health of a person plays a vital role in the collective health of his community and hence the well-being of the society as a whole. But, in today’s fast paced technology driven world, health issues are increasingly being associated with human behaviors – their lifestyle. Social networks have tremendous impact on the health behavior of individuals. Many researchers have used social network analysis to understand human behavior that implicates their social and economic environments. It would be interesting to use a similar analysis to understand human behaviors that have health implications. This paper focuses on concepts of those behavioural analyses that have health implications using social networks analysis and provides possible algorithmic approaches. The results of these approaches can be used by the governing authorities for rolling out health plans, benefits and take preventive measures, while the pharmaceutical companies can target specific markets, helping health insurance companies to better model their insurance plans.Keywords: breadth first search, directed graph, health behaviors, social network analysis
Procedia PDF Downloads 4714734 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks
Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi
Abstract:
Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.Keywords: fiber-wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC)
Procedia PDF Downloads 5314733 Modelisation of a Full-Scale Closed Cement Grinding
Abstract:
An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.Keywords: grinding circuit, clinker, cement, modeling, population balance, energy
Procedia PDF Downloads 5264732 Computational Identification of Signalling Pathways in Protein Interaction Networks
Authors: Angela U. Makolo, Temitayo A. Olagunju
Abstract:
The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways
Procedia PDF Downloads 5444731 Constructing Orthogonal De Bruijn and Kautz Sequences and Applications
Authors: Yaw-Ling Lin
Abstract:
A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences.Keywords: biomolecular sequence synthesis, de Bruijn sequences, Eulerian cycle, Hamiltonian cycle, Kautz sequences, orthogonal sequences
Procedia PDF Downloads 1674730 Modeling and Simulation of a CMOS-Based Analog Function Generator
Authors: Madina Hamiane
Abstract:
Modelling and simulation of an analogy function generator is presented based on a polynomial expansion model. The proposed function generator model is based on a 10th order polynomial approximation of any of the required functions. The polynomial approximations of these functions can then be implemented using basic CMOS circuit blocks. In this paper, a circuit model is proposed that can simultaneously generate many different mathematical functions. The circuit model is designed and simulated with HSPICE and its performance is demonstrated through the simulation of a number of non-linear functions.Keywords: modelling and simulation, analog function generator, polynomial approximation, CMOS transistors
Procedia PDF Downloads 4594729 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 454728 Effects of Aerobic Dance Circuit Training Programme on Blood Pressure Variables of Obese Female College Students in Oyo State, Nigeria
Authors: Isiaka Oladele Oladipo, Olusegun Adewale Ajayi
Abstract:
The blood pressure fitness of female college students has been implicated in sedentary lifestyles. This study was designed to determine the effects of the Aerobic Dance Circuit Training Programme (ADCT) on blood pressure variables (Diastolic Blood Pressure (DBP) and Systolic Blood Pressure (SBP). Participants’ Pretest-Posttest control group quasi-experimental design using a 2x2x4 factorial matrix was adopted, while one (1) research question and two (2) research hypotheses were formulated. Seventy (70) untrained obese students-volunteers age 21.10±2.46 years were purposively selected from Oyo town, Nigeria; Emmanuel Alayande College of Education (experimental group and Federal College of Education (special) control group. The participants’ BMI, weight (kg), height (m), systolic bp(mmHg), and diastolic bp (mmHg) were measured before and completion of ADCT. Data collected were analysed using a pie chart, graph, percentage, mean, frequency, and standard deviation, while a t-test was used to analyse the stated hypotheses set at the critical level of 0.05. There were significant mean differences in baseline and post-treatment values of blood pressure variables in terms of SBP among the experimental group 136.49mmHg and 131.66mmHg; control group 130.82mmHg and 130.56mmHg (crit-t=2.00, cal.t=3.02, df=69, p<.0, the hypothesis was rejected; while DBP experimental group 88.65mmHg and 82.21mmHg; control group 69.91mmHg and 72.66mmHg (crit-t=2.00, cal.t=1.437, df=69, p>.05) in which the hypothesis was accepted). It was revealed from the findings that participants’ SBP decrease from week 4 to week 12 of ADCT indicated an effective reduction in blood pressure variables of obese female students. Therefore, the study confirmed that the use of ADCT is safe and effective in the management of blood pressure for the healthy benefit of obesity.Keywords: aerobic dance circuit training, fitness lifestyles, obese college female students, systolic blood pressure, diastolic blood pressure
Procedia PDF Downloads 764727 Robust Diagnosability of PEMFC Based on Bond Graph LFT
Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet
Abstract:
Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis
Procedia PDF Downloads 3664726 On-Screen Disability Delineation and Social Representation: An Evaluation
Authors: Chetna Jaswal, Nishi Srivastava, Ahammedul Kabeer AP, Puja Prasad
Abstract:
We are a culture of mass media consumers and cinema as its integral part has high visibility and potential influence on public attitude towards disability which maintains no sociocultural boundaries but experiences substantial social marginalization. Given the lack of awareness and direct experience with disability, on-screen or film representations can give powerful and memorable definitions for the public that can contribute to framing the perception and attitude change. Social representation refers to common ways of thinking, conceiving about and evaluating social reality. It is a product of collective cognition, common sense and thought system. This study aims at analyzing the representations and narratives of disability in Indian cinema and Hollywood with the help of a conceptual understanding of social representation and its theoretical framework.Keywords: disability, social representation, mainstream cinema, diversity
Procedia PDF Downloads 1704725 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 4154724 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 1344723 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 3714722 Design of a Tool for Generating Test Cases from BPMN
Authors: Prat Yotyawilai, Taratip Suwannasart
Abstract:
Business Process Model and Notation (BPMN) is more important in the business process and creating functional models, and is a standard for OMG, which becomes popular in various organizations and in education. Researches related to software testing based on models are prominent. Although most researches use the UML model in software testing, not many researches use the BPMN Model in creating test cases. Therefore, this research proposes a design of a tool for generating test cases from the BPMN. The model is analyzed and the details of the various components are extracted before creating a flow graph. Both details of components and the flow graph are used in generating test cases.Keywords: software testing, test case, BPMN, flow graph
Procedia PDF Downloads 5554721 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 674720 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.Keywords: wireless performance analysis, coexistence analysis, IEEE 802.11g, IEEE 802.15.4
Procedia PDF Downloads 5524719 Numerical Simulation of the Effect of 1 Mev Electron Beam on the Performance of a Solar Cell of Type n+/p GaAs
Authors: Waleed Alsaidy, Mourad Mbarki
Abstract:
In this work, it have investigated the effect of electron irradiation on the output characteristics of n+/p GaAs solar cell. The studied solar cell is exposed to an electron beam with kinetic energy of 1 MeV under AM0 illumination. In this work, it have used our own software to calculate the damage caused by these energetic particles. Indeed, these particles produce severe degradation on the performances of the solar cells. The aim of this work is to investigate the effect of electronic irradiation on the J(V) characteristics upon the fluence of particles φ (electron/cm2). Thereafter, we have evaluated the degradation of its performances such as the short circuit current J_sc, the open circuit voltage V_oc the efficiency η with respect to the fluence φ of electrons. it have shown that the variation of these parameters decrease linearly with the logarithm of the fluence φ, and their degradation begins from a threshold value φ_m. To validate our calculation, we have compared our results with other theoretical and experimental results available in the literature and we have found a good agreement between them.Keywords: solar cells, GaAs, short circuit current, open circuit voltage, fluence, degradation
Procedia PDF Downloads 224718 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)
Authors: Tesfaye Fenta Boka, Niu Zhendong
Abstract:
Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks
Procedia PDF Downloads 904717 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering
Procedia PDF Downloads 3994716 Second Representation of Modules over Commutative Rings
Authors: Jawad Abuhlail, Hamza Hroub
Abstract:
Let R be a commutative ring. Representation theory studies the representation of R-modules as (possibly finite) sums of special types of R-submodules. Here we are interested in a class of R-modules between the class of semisimple R-modules and the class of R-modules that can be written as (possibly finite) sums of secondary R-submodules (we know that every simple R-submodule is secondary). We investigate R-modules which can be written as (possibly finite) sums of second R-submodules (we call those modules second representable). Moreover, we investigate the class of (main) second attached prime ideals related to a module with such representation. We provide sufficient conditions for an R-module M to get a (minimal) second representation. We also found the collection of second attached prime ideals for some types of second representable R-modules, in particular within the class of injective R-modules. As we know that every simple R-submodule is second and every second R-submodule is secondary, we can see the importance of the second representable R-module.Keywords: lifting modules, second attached prime ideals, second representations, secondary representations, semisimple modules, second submodules
Procedia PDF Downloads 1924715 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey
Authors: Maleh Yassine, Ezzati Abdellah
Abstract:
Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS
Procedia PDF Downloads 3854714 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1474713 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants
Authors: Subhash Chandra Sharma, Mohammad Soleimani
Abstract:
Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants
Procedia PDF Downloads 295