Search results for: cycle stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5195

Search results for: cycle stability

4985 Developing a Rational Database Management System (RDBMS) Supporting Product Life Cycle Appications

Authors: Yusri Yusof, Chen Wong Keong

Abstract:

This paper presents the implementation details of a Relational Database Management System of a STEP-technology product model repository. It is able support the implementation of any EXPRESS language schema, although it has been primarily implemented to support mechanical product life cycle applications. This database support the input of STEP part 21 file format from CAD in geometrical and topological data format and support a range of queries for mechanical product life cycle applications. This proposed relational database management system uses entity-to-table method (R1) rather than type-to-table method (R4). The two mapping methods have their own strengths and drawbacks.

Keywords: RDBMS, CAD, ISO 10303, part-21 file

Procedia PDF Downloads 514
4984 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 30
4983 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings

Authors: Amira Amamou, Mnaouar Chouchane

Abstract:

This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.

Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations

Procedia PDF Downloads 385
4982 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel

Authors: W. Handoko, F. Pahlevani, V. Sahajwalla

Abstract:

Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.

Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion

Procedia PDF Downloads 191
4981 Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells

Authors: Sharon Yunger, Liat Altman, Yuval Garini, Yaron Shav-Tal

Abstract:

Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression.

Keywords: cell cycle, living cells, nucleus, transcription

Procedia PDF Downloads 278
4980 The Potential of Braking Energy Recuperation in a City Bus Diesel Engine in the Japanese JE05 Emission Test Cycle

Authors: Grzegorz Baranski, Piotr Kacejko, Konrad Pietrykowski, Mariusz Duk

Abstract:

This paper discusses a model of a bus-driving scheme. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the mechanical energy recuperation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass. The research results show that fuel economy is impacted by kinetic energy recuperation.

Keywords: heavy duty vehicle, city bus, Japanese JE05 test cycle, kinetic energy, simulations

Procedia PDF Downloads 193
4979 Magneto-Solutal Convection in Newtonian Fluid Layer with Modulated Gravity

Authors: Om Prakash Keshri, Anand Kumar, Vinod K. Gupta

Abstract:

In the present study, the effect of gravity modulation on the onset of convection in viscous fluid layer under the influence of induced magnetic field, salted from above on the boundaries, has been investigated. Linear and nonlinear stability analysis has been performed. A linear stability analysis is performed to show that the gravity modulation can significantly affect the stability limits of the system. A method based on small amplitude of the modulation is used to compute the critical value of Rayleigh number and wave number. The effect of Smith number, salute Rayleigh number and magnetic Prandtl number on the stability of the system is investigated.

Keywords: viscous fluid, induced magnetic field, gravity modulation, salute convection

Procedia PDF Downloads 169
4978 Challenging Barriers to the Evolution of the Saudi Animation Industry Life-Cycle

Authors: Ohud Alharbi, Emily Baines

Abstract:

The animation industry is one of the creative industries that have attracted recent historiographical attention. However, there has been very limited research on Saudi Arabian and wider Arabian animation industries, while there are a large number of studies that have covered this issue for North America, Europe and East Asia. The existing studies show that developed countries such as USA, Japan and the UK have reached the Maturity stage in their animation industry life-cycle. On the other hand, developing countries that are still in the Introduction phase of the industry life-cycle face challenges to improve their industry. Saudi Arabia is one of the countries whose animation industry is still in its infancy. Thus, the aim of this paper is to address the main barriers that hinder the evolution of the industry life-cycle for Saudi animation – challenges that are also relevant to many other early stage industries in developing countries. These barriers have been analysed using the early mobility barriers defined by Porter, to provide a conceptual structure for defining recommendations to enable the transition to a strong Growth phase industry. This study utilized qualitative methods to collect data, which involved in-depth interviews, document analysis and observations. It also undertook a comparative case study approach to investigate the animation industry life-cycle, with three selected case studies that have a more developed industry than Saudi animation. Case studies include: the United Kingdom, which represents a Mature animation industry; Egypt, which represents an established Growth stage industry; and the United Arab of Emirates, which is an early Growth stage industry. This study suggests adopting appropriate strategies that arise as findings from the comparative case studies, to overcome barriers and facilitate the growth of the Saudi animation industry.

Keywords: barriers, industry life-cycle, Saudi animation, industry

Procedia PDF Downloads 552
4977 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability

Authors: G. Khamooshian, A. Abbasimoshaei

Abstract:

Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.

Keywords: excavation, soil effects, nailing, hole analyzing

Procedia PDF Downloads 160
4976 Reading Knowledge Development and Its Phases with Generation Z

Authors: Onur Özdemir, M.Erhan ORHAN

Abstract:

Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.

Keywords: knowledge development, knowledge management, generation Z, intelligence cycle

Procedia PDF Downloads 493
4975 Changes in Postural Stability after Coordination Exercise

Authors: Ivan Struhár, Martin Sebera, Lenka Dovrtělová

Abstract:

The aim of this study was to find out if the special type of exercise with elastic cord can improve the level of postural stability. The exercise programme was conducted twice a week for 3 months. The participants were randomly divided into an experimental group and a control group. The electronic balance board was used for testing of postural stability. All participants trained for 18 hours at the time of experiment without any special form of coordination programme. The experimental group performed 90 minutes plus of coordination exercise. The result showed that differences between pre-test and post-test occurred in the experimental group. It was used the nonparametric Wilcoxon t-test for paired samples (p=0.012; the significance level 95%). We calculated effect size by Cohen´s d. In the experimental group d is 1.96 which indicates a large effect. In the control group d is 0.04 which confirms no significant improvement.

Keywords: balance board, balance training, coordination, stability

Procedia PDF Downloads 373
4974 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 493
4973 Radiation Stability of Pigment ZnO Modified by Nanopowders

Authors: Chundong Li, V. V. Neshchimenko, M. M. Mikhailov

Abstract:

The effect of the modification of ZnO powders by ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 nanoparticles with a concentration of 1-30 wt % is investigated by diffuse reflectance spectra within the wavelength range 200 to 2500 nm before and after 100 keV proton and electron irradiation. It has been established that the introduction of nanoparticles ZrO2, Al2O3 enhances the optical stability of the pigments under proton irradiation, but reduces it under electron irradiation. Modifying with TiO2, SiO2, CeO2, Y2O3 nanopowders leads to decrease radiation stability in both types of irradiation. Samples modified by 5 wt. % of ZrO2 nanoparticles have the highest stability of optical properties after proton exposure. The degradation of optical properties under electron irradiation is not high for this concentration of nanoparticles. A decrease in the absorption of pigments modified with nanoparticles proton exposure is determined by a decrease in the intensity of bands located in the UV and visible regions. After electron exposure the absorption bands have in the whole spectrum range.

Keywords: irradiation, nanopowders, radiation stability, zinc oxide

Procedia PDF Downloads 406
4972 Stochastic Response of an Airfoil and Its Effects on Limit Cycle Oscillations’ Behavior under Stall Flutter Regime

Authors: Ketseas Dimitris

Abstract:

In this work, we investigate the effect of noise on a classical two-degree-of-freedom pitch-plunge aeroelastic system. The inlet velocity of the flow is modelled as a stochastically varying parameter by the Ornstein-Uhlenbeck (OU) stochastic process. The system is a 2D airfoil, and the elastic problem is simulated using linear springs. We study the manifestation of Limit Cycle Oscillations (LCO) that correspond to the varying fluid velocity under the dynamic stall regime. We aim to delve into the unexplored facets of the classical pitch-plunge aeroelastic system, seeking a comprehensive understanding of how parametric noise influences the occurrence of LCO and expands the boundaries of its known behavior.

Keywords: aerodynamics, aeroelasticity, computational fluid mechanics, stall flutter, stochastical processes, limit cycle oscillation

Procedia PDF Downloads 38
4971 Effect of Whole Body Vibration on Posture Stability and Planter Pressure in Patients with Diabetic Neuropathy

Authors: Azza M. Atya, Mahmoud M. Nasser

Abstract:

Background/ /Significance: Peripheral neuropathy is one of the long term serious complications of diabetes, which may attribute to postural instability and alteration of planter pressure. Whole body vibration (WBV) is a somatosensory stimulation type of exercise that has been emerged in sport training and rehabilitation of neuromuscular disorders. Purpose: The aim of this study was to investigate the effect of whole Body Vibration on antroposterior (AP), mediolateral (ML) posture stability and planter foot pressure in patients with diabetic neuropathy. Subjects: forty diabetic patients with moderate peripheral neuropathy aged from 35 to 50 years, were randomly assigned to WBV group (n=20) and control group (n=20). Methods and Materials: the WBV intervention consisted of three session weekly for 8 weeks (frequency 20 Hz, peak-to peak displacement 4mm, acceleration 3.5 g). Biodex balance system was used for postural stability assessment and the foot scan plate was used to measure the mean peak pressure under the first and lesser metatarsals. The main Outcome measures were antroposterior stability index (APSI), mediolateral stability index (MLSI), overall stability index (OSI),and mean peak foot pressure. Analyses: Statistical analysis was performed using the SPSS software package (SPSS for Windows Release 18.0). T-test was used to compare between the pre- and post-treatment values between and within groups. Results: For the 40 study participants (18male and 22 females) there were no between-group differences at baseline. At the end of 8 weeks, Subjects in WBV group experienced significant increase in postural stability with a reduction of mean peak of planter foot pressure (P<0.05) compared with the control group. Conclusion: The result suggests that WBV is an effective therapeutic modality for increasing postural stability and reducing planter pressure in patients with diabetic neuropathy.

Keywords: whole body vibration, diabetic neuropathy, posture stability, foot pressure

Procedia PDF Downloads 366
4970 Life Cycle-Based Analysis of Meat Production: Ecosystem Impacts

Authors: Michelle Zeyuan Ma, Hermann Heilmeier

Abstract:

Recently, meat production ecosystem impacts initiated many hot discussions and researchers, and it is a difficult implementation to reduce such impacts due to the demand of meat products. It calls for better management and control of ecosystem impacts from every aspects of meat production. This article analyzes the ecosystem impacts of meat production based on meat products life cycle. The analysis shows that considerable ecosystem impacts are caused by different meat production steps: initial establishment phase, animal raising, slaughterhouse processing, meat consumption, and wastes management. Based on this analysis, the impacts are summarized as: leading factor for biodiversity loss; water waste, land use waste and land degradation; greenhouse gases emissions; pollution to air, water, and soil; related major diseases. The article also provides a discussion on a solution-sustainable food system, which could help in reducing ecosystem impacts. The analysis method is based on the life cycle level, it provides a concept of the whole meat industry ecosystem impacts, and the analysis result could be useful to manage or control meat production ecosystem impacts from investor, producer and consumer sides.

Keywords: eutrophication, life cycle based analysis, sustainable food, waste management

Procedia PDF Downloads 191
4969 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 119
4968 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid

Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine

Abstract:

New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.

Keywords: control strategy, drive cycle, hybrid vehicle, simulation

Procedia PDF Downloads 352
4967 Performance Analysis of High Temperature Heat Pump Cycle for Industrial Process

Authors: Seon Tae Kim, Robert Hegner, Goksel Ozuylasi, Panagiotis Stathopoulos, Eberhard Nicke

Abstract:

High-temperature heat pumps (HTHP) that can supply heat at temperatures above 200°C can enhance the energy efficiency of industrial processes and reduce the CO₂ emissions connected with the heat supply of these processes. In the current work, the thermodynamic performance of 3 different vapor compression cycles, which use R-718 (water) as a working medium, have been evaluated by using a commercial process simulation tool (EBSILON Professional). All considered cycles use two-stage vapor compression with intercooling between stages. The main aim of the study is to compare different intercooling strategies and study possible heat recovery scenarios within the intercooling process. This comparison has been carried out by computing the coefficient of performance (COP), the heat supply temperature level, and the respective mass flow rate of water for all cycle architectures. With increasing temperature difference between the heat source and heat sink, ∆T, the COP values decreased as expected, and the highest COP value was found for the cycle configurations where both compressors have the same pressure ratio (PR). The investigation on the HTHP capacities with optimized PR and exergy analysis has also been carried out. The internal heat exchanger cycle with the inward direction of secondary flow (IHX-in) showed a higher temperature level and exergy efficiency compared to other cycles. Moreover, the available operating range was estimated by considering mechanical limitations.

Keywords: high temperature heat pump, industrial process, vapor compression cycle, R-718 (water), thermodynamic analysis

Procedia PDF Downloads 129
4966 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing

Authors: Aldona Kluczek

Abstract:

In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.

Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment

Procedia PDF Downloads 229
4965 Constructing Orthogonal De Bruijn and Kautz Sequences and Applications

Authors: Yaw-Ling Lin

Abstract:

A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences.

Keywords: biomolecular sequence synthesis, de Bruijn sequences, Eulerian cycle, Hamiltonian cycle, Kautz sequences, orthogonal sequences

Procedia PDF Downloads 144
4964 Analysis of Gait Characteristics Using Dynamic Foot Scanner in Type 2 Diabetes Mellitus

Authors: C. G. Shashi Kumar, G. Arun Maiya, H. Manjunath Hande, K. V. Rajagopal

Abstract:

Background: Diabetes mellitus (DM) is a metabolic disorder with involvement of neurovascular and muscular system. Studies have documented that the gait parameter is altered in type 2 diabetes mellitus with peripheral neuropathy. However, there is a dearth of literature regarding the gait characteristics in type 2 diabetes mellitus (T2DM) without peripheral neuropathy. Therefore, the present study is focused on identifying gait changes in early type 2 diabetes mellitus without peripheral neuropathy. Objective: To analyze the gait characteristics in Type 2 diabetes mellitus without peripheral neuropathy. Methods: After obtaining ethical clearance from Institutional Ethical Committee (IEC), 36 T2DM without peripheral neuropathy and 32 matched healthy subjects were recruited. Gait characteristics (step duration, gait cycle length, gait cycle duration, stride duration, step length, double stance duration) of all the subjects were analyzed using Windtrack dynamic foot scanner. Data were analyzed using Independent‘t’ test to find the difference between the groups (step duration, gait cycle length, gait cycle duration) and Mann-Whitney test was used to analyze the step length and double stance duration to find difference between the groups. Level of significance was kept at P<0.05. Results: Result analysis showed significant decrease in step duration, gait cycle length, gait cycle duration, step length, double stance duration in T2DM subjects as compared to healthy subjects. We also observed a mean increase in stride duration in T2DM subjects compared to healthy subjects.

Keywords: type 2 diabetes mellitus, dynamic foot scan, gait characteristics, medical and health sciences

Procedia PDF Downloads 416
4963 Parametric Study of Underground Opening Stability under Uncertainty Conditions

Authors: Aram Yakoby, Yossef H. Hatzor, Shmulik Pinkert

Abstract:

This work presents an applied engineering method for evaluating the stability of underground openings under conditions of uncertainty. The developed method is demonstrated by a comprehensive parametric study on a case of large-diameter vertical borehole stability analysis, with uncertainties regarding the in-situ stress distribution. To this aim, a safety factor analysis is performed for the stability of both supported and unsupported boreholes. In the analysis, we used analytic geomechanical calculations and advanced numerical modeling to evaluate the estimated stress field. In addition, the work presents the development of a boundary condition for the numerical model that fits the nature of the problem and yields excellent accuracy. The borehole stability analysis is studied in terms of (1) the stress ratio in the vertical and horizontal directions, (2) the mechanical properties and geometry of the support system, and (3) the parametric sensitivity. The method's results are studied in light of a real case study of an underground waste disposal site. The conclusions of this study focus on the developed method for capturing the parametric uncertainty, the definition of critical geological depths, the criteria for implementing structural support, and the effectiveness of further in-situ investigations.

Keywords: borehole stability, in-situ stress, parametric study, factor of safety

Procedia PDF Downloads 40
4962 First and Second Analysis on the Reheat Organic Rankine Cycle

Authors: E. Moradimaram, H. Sayehvand

Abstract:

In recent years the increasing use of fossil fuels has led to various environmental problems including urban pollution, ozone layer depletion and acid rains. Moreover, with the increased number of industrial centers and higher consumption of these fuels, the end point of the fossil energy reserves has become more evident. Considering the environmental pollution caused by fossil fuels and their limited availability, renewable sources can be considered as the main substitute for non-renewable resources. One of these resources is the Organic Rankine Cycles (ORCs). These cycles while having high safety, have low maintenance requirements. Combining the ORCs with other systems, such as ejector and reheater will increase overall cycle efficiency. In this study, ejector and reheater are used to improve the thermal efficiency (ηth), exergy efficiency (η_ex) and net output power (w_net); therefore, the ORCs with reheater (RORCs) are proposed. A computational program has been developed to calculate the thermodynamic parameters required in Engineering Equations Solver (EES). In this program, the analysis of the first and second law in RORC is conducted, and a comparison is made between them and the ORCs with Ejector (EORC). R245fa is selected as the working fluid and water is chosen as low temperature heat source with a temperature of 95 °C and a mass transfer rate of 1 kg/s. The pressures of the second evaporator and reheater are optimized in terms of maximum exergy efficiency. The environment is at 298.15 k and at 101.325 kpa. The results indicate that the thermodynamic parameters in the RORC have improved compared to EORC.

Keywords: Organic Rankine Cycle (ORC), Organic Rankine Cycle with Reheater (RORC), Organic Rankine Cycle with Ejector (EORC), exergy efficiency

Procedia PDF Downloads 143
4961 Urban Poor: The Situations and Characteristics of the Problem and Social Welfare Service of Bangkok Metropolis

Authors: Sanchai Ratthanakwan

Abstract:

This research aims to study situations and characteristics of the problems facing the urban poor. The data and information are collected by focus group and in-depth interview leader and members of Four Regions Slum Network, community representatives and the social welfare officer. The research can be concluded that the problems of the urban poor faced with three major problems: Firstly, the shortage of housing and stability issues in housing; secondly, the problem of substandard quality of life; and thirdly, the debt problem. The study found that a solution will be found in two ways: First way is the creation of housing for the urban poor in slums or community intrusion by the state. Second way is the stability in the housing and subsistence provided by the community center called “housing stability”.

Keywords: urban poor, social welfare, Bangkok metropolis, housing stability

Procedia PDF Downloads 401
4960 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries

Authors: Fang Li, Jiazhao Wang, Jianmin Ma

Abstract:

The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.

Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries

Procedia PDF Downloads 122
4959 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 409
4958 Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle

Authors: Kadri Koçer, Sezer Kefeli

Abstract:

This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle.

Keywords: maneuverability, stability, CFD, tail configuration, hydrodynamic design

Procedia PDF Downloads 156
4957 Urban Planning Compilation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hyper-Cycle Theory

Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang

Abstract:

Systematic science reveals the complex nonlinear mechanisms of behaviour in urban system. However, in China, when the current city planners face with the system, most of them are still taking simple linear thinking to consider the open complex giant system. This paper introduces the hyper-cycle theory, which is one of the basis theories of systematic science, based on the analysis of the reasons why the current urban planning failed, and proposals for optimization ideas that urban planning compilation should change, from controlling quantitative to the changes of relationship, from blueprint planning to progressive planning based on the nonlinear characteristics and from management control to dynamically monitor feedback.

Keywords: systematic science, hyper-cycle theory, urban planning, urban management

Procedia PDF Downloads 378
4956 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 127