Search results for: composite model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18424

Search results for: composite model

18214 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 437
18213 Hybrid Conductive Polymer Composites: Effect of Mixed Fillers and Polymer Blends on Pyroresistive Properties

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

High-density polyethylene (HDPE) filled with silver coated glass flakes (5µm) was investigated and the effect on PTC by addition of a second filler (100µm silver coated glass flake) or matrix (polypropylene elastomer) to the composite were examined. The addition of the secondary filler promoted the electrical properties of the composite. The bigger flakes acted like a bridge between the small flakes and this helped to enhance the electrical properties. The PTC behaviour of the composite was also improved by the addition of the bigger flakes due to the increase in separation distance between particles caused by the bigger flakes. Addition of small amount of polypropylene elastomer enhanced not only PTC effect but also improved substantially the flexibility of the composite as well as reduces the overall filler content. SEM images showed that the fillers were dispersed in the HDPE phase.

Keywords: positive temperature coefficient, conductive polymer composite, electrical conductivity, high density polyethylene

Procedia PDF Downloads 471
18212 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries

Authors: Behzad Babaei, B. Gangadhara Prusty

Abstract:

The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.

Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress

Procedia PDF Downloads 101
18211 Experimental Damping Performance of Composite Materials with Different Fibre Orientations

Authors: Ferhat Kadioglu

Abstract:

A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.

Keywords: composite materials, damping values, dynamic properties, non-contact measurements

Procedia PDF Downloads 348
18210 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 121
18209 Study of Hot Press Molding Method of Biodegradable Composite, Polypropylene Reinforced Coconut Coir

Authors: Herman Ruswan Suwarman, Ahmad Rivai, Mochamad Saidiman, Kuncoro Diharjo, Dody Ariawan

Abstract:

The use of biodegradable composite to solve ecological and environmental problems has currently risen as a trend. With the increasing use of biodegradable composite comes an increasing need to fabricate it properly. Yet this understanding has remained a challenge for the design engineer. Therefore, this study aims to explore how to combine coconut coir as a reinforcing material and polypropylene (PP) as a biodegradable polymer matrix. By using Hotpress Molding, two methods were developed and compared. The difference between these two methods is not only the step of fabrication but also the raw material. The first method involved a PP sheet and the second used PP pellets directly. Based on the results, it can be concluded that PP pellets yield better results, where the composite was produced in a shorter time, with an evenly distributed coconut coir and a smaller number of voids.

Keywords: biodegradable, coconut coir, hot press molding, polypropylene

Procedia PDF Downloads 146
18208 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 232
18207 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending

Authors: Aamir Mubashar, Ibrahim Fiaz

Abstract:

This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.

Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model

Procedia PDF Downloads 138
18206 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 400
18205 The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia

Authors: Muhammad Nurrizka Ramadhan

Abstract:

Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite.

Keywords: bamboo, composite, furniture, wood

Procedia PDF Downloads 376
18204 Theoretical and Experimental Bending Properties of Composite Pipes

Authors: Maja Stefanovska, Svetlana Risteska, Blagoja Samakoski, Gari Maneski, Biljana Kostadinoska

Abstract:

Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted according to ASTM D790 standard. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis.

Keywords: bending properties, composite pipe, winding design, SEM

Procedia PDF Downloads 329
18203 Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase

Authors: Vahidullah Tac, Ercan Gurses

Abstract:

There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.

Keywords: carbon nanotube, composite, interphase, micromechanical modeling

Procedia PDF Downloads 166
18202 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 116
18201 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 132
18200 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method

Authors: Kadda Boumediene, Mohamed Ziani

Abstract:

Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.

Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape

Procedia PDF Downloads 353
18199 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite

Authors: G. Purushotham, Joel Hemanth

Abstract:

An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.

Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills

Procedia PDF Downloads 398
18198 Collapse Analysis of Planar Composite Frame under Impact Loads

Authors: Lian Song, Shao-Bo Kang, Bo Yang

Abstract:

Concrete filled steel tubular (CFST) structure has been widely used in construction practices due to its superior performances under various loading conditions. However, limited studies are available when this type of structure is subjected to impact or explosive loads. Current methods in relevant design codes are not specific for preventing progressive collapse of CFST structures. Therefore, it is necessary to carry out numerical simulations on CFST structure under impact loads. In this study, finite element analyses are conducted on the mechanical behaviour of composite frames which composed of CFST columns and steel beams subject to impact loading. In the model, CFST columns are simulated using finite element software ABAQUS. The model is verified by test results of solid and hollow CFST columns under lateral impacts, and reasonably good agreement is obtained through comparisons. Thereafter, a multi-scale finite element modelling technique is developed to evaluate the behaviour of a five-storey three-span planar composite frame. Alternate path method and direct simulation method are adopted to perform the dynamic response of the frame when a supporting column is removed suddenly. In the former method, the reason for column removal is not considered and only the remaining frame is simulated, whereas in the latter, a specific impact load is applied to the frame to take account of the column failure induced by vehicle impact. Comparisons are made between these two methods in terms of displacement history and internal force redistribution, and design recommendations are provided for the design of CFST structures under impact loads.

Keywords: planar composite frame, collapse analysis, impact loading, direct simulation method, alternate path method

Procedia PDF Downloads 518
18197 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
18196 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.

Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin

Procedia PDF Downloads 185
18195 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials

Authors: H. Yanar, G. Purcek, H. H. Ayar

Abstract:

The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.

Keywords: brake pad composite, friction and wear, rubber, friction materials

Procedia PDF Downloads 137
18194 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section

Authors: Redouane Lombarkia

Abstract:

To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental results

Keywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA

Procedia PDF Downloads 95
18193 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 232
18192 Investigation of Graphene-MoS₂ Nanocomposite as Counter Electrode in Dye-Sensitized Solar Cells

Authors: Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Mehdi Ghahari

Abstract:

Dye-sensitized solar cells are sustainable tool for generating electrical energy using sunlight. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Herein, we employed a MoS₂/graphene composite instead of platinum in the DSSCs. Platinum is an efficient and conventional counter electrode in the preparation of DSSCs, for this purpose, the effect of the presence of platinum electrode was also studied under similar conditions. The prepared nanocomposite product was checked by analysis methods to confirm the correctness of the construction and the desired structure. Finally, the DSSCs were fabricated using MoS₂/graphene composite, and to compare the results, the DSSCs were also prepared using platinum. The results showed that the prepared composite has a similar performance compared to platinum and can replace it.

Keywords: efficiency, dye-sensitized solar cell, nano-composite MoS₂, platinum free

Procedia PDF Downloads 64
18191 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings

Authors: S. Mahdavi, S.R. Allahkaram

Abstract:

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium

Procedia PDF Downloads 487
18190 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology

Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos

Abstract:

An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.

Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound

Procedia PDF Downloads 143
18189 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 76
18188 Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis

Procedia PDF Downloads 464
18187 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 335
18186 Influence of the Test Environment on the Dynamic Response of a Composite Beam

Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar

Abstract:

Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.

Keywords: vibration, composite, endommagement, correlation

Procedia PDF Downloads 365
18185 Enhancing the Piezoelectric, Thermal, and Structural Properties of the PVDF-HFP/PZT/GO Composite for Improved Mechanical Energy Harvesting

Authors: Salesabil Labihi, Adil Eddiai, Mounir El Achaby, Mounir Meddad, Omar Cherkaoui, M’hammed Mazroui

Abstract:

Piezoelectric materials provide a promising renewable energy source by converting mechanical energy into electrical energy through pressure and vibration. This study focuses on improving the conversion performance of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by incorporating graphene oxide (GO) and lead zirconate titanate (PZT). The dispersion of PZT and GO within the PVDF-HFP matrix was found to be homogeneous, resulting in high piezoelectric performance with an increase in the β-phase content. The thermal stability of the PVDF-HFP polymer also improved with the addition of PZT/GO. However, as the percentage of PZT/GO increased, the young's modulus of the composite decreased significantly. The developed composite demonstrated promising performance as a potential candidate for energy harvesting applications.

Keywords: energy harvesting, mechanical conversion, piezoelectric composite, solvent casting method

Procedia PDF Downloads 82