Search results for: artificial recharge
2000 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target
Authors: Anh Duc Dang, Joachim Horn
Abstract:
This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbours are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.Keywords: formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems
Procedia PDF Downloads 4401999 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3541998 The Human Rights Code: Fundamental Rights as the Basis of Human-Robot Coexistence
Authors: Gergely G. Karacsony
Abstract:
Fundamental rights are the result of thousand years’ progress of legislation, adjudication and legal practice. They serve as the framework of peaceful cohabitation of people, protecting the individual from any abuse by the government or violation by other people. Artificial intelligence, however, is the development of the very recent past, being one of the most important prospects to the future. Artificial intelligence is now capable of communicating and performing actions the same way as humans; such acts are sometimes impossible to tell from actions performed by flesh-and-blood people. In a world, where human-robot interactions are more and more common, a new framework of peaceful cohabitation is to be found. Artificial intelligence, being able to take part in almost any kind of interaction where personal presence is not necessary without being recognized as a non-human actor, is now able to break the law, violate people’s rights, and disturb social peace in many other ways. Therefore, a code of peaceful coexistence is to be found or created. We should consider the issue, whether human rights can serve as the code of ethical and rightful conduct in the new era of artificial intelligence and human coexistence. In this paper, we will examine the applicability of fundamental rights to human-robot interactions as well as to the actions of artificial intelligence performed without human interaction whatsoever. Robot ethics has been a topic of discussion and debate of philosophy, ethics, computing, legal sciences and science fiction writing long before the first functional artificial intelligence has been introduced. Legal science and legislation have approached artificial intelligence from different angles, regulating different areas (e.g. data protection, telecommunications, copyright issues), but they are only chipping away at the mountain of legal issues concerning robotics. For a widely acceptable and permanent solution, a more general set of rules would be preferred to the detailed regulation of specific issues. We argue that human rights as recognized worldwide are able to be adapted to serve as a guideline and a common basis of coexistence of robots and humans. This solution has many virtues: people don’t need to adjust to a completely unknown set of standards, the system has proved itself to withstand the trials of time, legislation is easier, and the actions of non-human entities are more easily adjudicated within their own framework. In this paper we will examine the system of fundamental rights (as defined in the most widely accepted source, the 1966 UN Convention on Human Rights), and try to adapt each individual right to the actions of artificial intelligence actors; in each case we will examine the possible effects on the legal system and the society of such an approach, finally we also examine its effect on the IT industry.Keywords: human rights, robot ethics, artificial intelligence and law, human-robot interaction
Procedia PDF Downloads 2431997 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 5281996 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence
Authors: Srinivas Vangari
Abstract:
With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand
Procedia PDF Downloads 211995 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6131994 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver
Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen
Abstract:
This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network
Procedia PDF Downloads 761993 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4981992 Artificial Neural Networks Controller for Power System Voltage Improvement
Authors: Sabir Messalti, Bilal Boudjellal, Azouz Said
Abstract:
In this paper, power system Voltage improvement using wind turbine is presented. Two controllers are used: a PI controller and Artificial Neural Networks (ANN) controllers are studied to control of the power flow exchanged between the wind turbine and the power system in order to improve the bus voltage. The wind turbine is based on a doubly-fed induction generator (DFIG) controlled by field-oriented control. Indirect control is used to control of the reactive power flow exchanged between the DFIG and the power system. The proposed controllers are tested on power system for large voltage disturbances.Keywords: artificial neural networks controller, DFIG, field-oriented control, PI controller, power system voltage improvement
Procedia PDF Downloads 4611991 Progress of Legislation in Post-Colonial, Post-Communist and Socialist Countries for the Intellectual Property Protection of the Autonomous Output of Artificial Intelligence
Authors: Ammar Younas
Abstract:
This paper is an attempt to explore the legal progression in procedural laws related to “intellectual property protection for the autonomous output of artificial intelligence” in Post-Colonial, Post-Communist and Socialist Countries. An in-depth study of legal progression in Pakistan (Common Law), Uzbekistan (Post-Soviet Civil Law) and China (Socialist Law) has been conducted. A holistic attempt has been made to explore that how the ideological context of the legal systems can impact, not only on substantive components but on the procedural components of the formal laws related to IP Protection of autonomous output of Artificial Intelligence. Moreover, we have tried to shed a light on the prospective IP laws and AI Policy in the countries, which are planning to incorporate the concept of “Digital Personality” in their legal systems. This paper will also address the question: “How far IP of autonomous output of AI can be protected with the introduction of “Non-Human Legal Personality” in legislation?” By using the examples of China, Pakistan and Uzbekistan, a case has been built to highlight the legal progression in General Provisions of Civil Law, Artificial Intelligence Policy of the country and Intellectual Property laws. We have used a range of multi-disciplinary concepts and examined them on the bases of three criteria: accuracy of legal/philosophical presumption, applying to the real time situations and testing on rational falsification tests. It has been observed that the procedural laws are designed in a way that they can be seen correlating with the ideological contexts of these countries.Keywords: intellectual property, artificial intelligence, digital personality, legal progression
Procedia PDF Downloads 1181990 Analysis of Sound Loss from the Highway Traffic through Lightweight Insulating Concrete Walls and Artificial Neural Network Modeling of Sound Transmission
Authors: Mustafa Tosun, Kevser Dincer
Abstract:
In this study, analysis on whether the lightweight concrete walled structures used in four climatic regions of Turkey are also capable of insulating sound was conducted. As a new approach, first the wall’s thermal insulation sufficiency’s were calculated and then, artificial neural network (ANN) modeling was used on their cross sections to check if they are sound transmitters too. The ANN was trained and tested by using MATLAB toolbox on a personal computer. ANN input parameters that used were thickness of lightweight concrete wall, frequency and density of lightweight concrete wall, while the transmitted sound was the output parameter. When the results of the TS analysis and those of ANN modeling are evaluated together, it is found from this study, that sound transmit loss increases at higher frequencies, higher wall densities and with larger wall cross sections.Keywords: artificial neuron network, lightweight concrete, sound insulation, sound transmit loss
Procedia PDF Downloads 2521989 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 1191988 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network
Authors: Frankie Burgos, Emely Munar, Conrado Basa
Abstract:
This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading
Procedia PDF Downloads 2971987 Preparation of Papers – Inventorship Status For AI - A South African Perspective
Authors: Meshandren Naidoo
Abstract:
An artificial intelligence (AI) system named DABUS 2021 made headlines when it became the very first AI system to be listed in a patent which was then granted by the South African patent office. This grant raised much criticism. The question that this research intends to answer is (1) whether, in South African patent law, an AI can be an inventor. This research finds that despite South African law not recognising an AI as a legal person and despite the legislation not explicitly allowing AI to be inventors, a legal interpretative exercise would allow AI inventorship.Keywords: artificial intelligence, intellectual property, inventorship, patents
Procedia PDF Downloads 1051986 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise
Authors: Rahman Davtalab
Abstract:
Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise
Procedia PDF Downloads 1851985 Exploring Artificial Intelligence as a Transformative Tool for Urban Management
Authors: R. R. Govind
Abstract:
In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality
Procedia PDF Downloads 611984 AI Features in Netflix
Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji
Abstract:
The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.Keywords: easy accessibility, recommends, accuracy, privacy
Procedia PDF Downloads 631983 Employing Artificial Intelligence Tools in Making Clothing Designs Inspired by the Najdi Art of Sadu
Authors: Basma Abdel Mohsen Al-Sheikh
Abstract:
This study aimed to create textile designs inspired by Najdi Al-Sadu art, with the objective of highlighting Saudi identity and heritage. The research proposed clothing designs for women and children, utilizing textiles inspired by Najdi Al-Sadu art, and incorporated artificial intelligence techniques in the design process. The study employed a descriptive-analytical approach to describe Najdi Al-Sadu, and an experimental method involving the creation of textile designs inspired by Al-Sadu. The study sample consisted of 33 participants, including experts in the fashion and textile industry, fashion designers, lecturers, professors, and postgraduate students from King Abdulaziz University. A questionnaire was used as a tool to gather opinions regarding the proposed designs. The results demonstrated a clear acceptance of the designs inspired by Najdi Al-Sadu and incorporating artificial intelligence, with approval rates ranging from 22% to 81% across different designs. The study concluded that artificial intelligence applications have a significant impact on fashion design, particularly in the integration of Al-Sadu art. The findings also indicated a positive reception of the designs in terms of their aesthetic and functional aspects, although individual preferences led to some variations in opinions. The results highlighted a demand for designs that combine heritage and modern fashion, striking a balance between authenticity and contemporary style. The study recommended that designers continue to explore ways to integrate cultural heritage, such as Al-Sadu art, with contemporary design elements to achieve this balance. Furthermore, it emphasized the importance of enhancing the aesthetic and functional aspects of designs, taking into consideration the preferences of the target market and customer expectations. The effective utilization of artificial intelligence was also emphasized to improve design processes, expand creative possibilities, and foster innovation and authenticity.Keywords: Najdi Al-Sadu art, artificial intelligence, women's and children's fashion, clothing designs
Procedia PDF Downloads 751982 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network
Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani
Abstract:
Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking
Procedia PDF Downloads 881981 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma
Authors: W. Walke, J. Przondziono, K. Nowińska
Abstract:
The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS
Procedia PDF Downloads 2661980 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm
Procedia PDF Downloads 4101979 The Cultural Persona of Artificial Intelligence: An Analysis of Anthropological Challenges to Public Communication
Authors: Abhivardhan, Ritu Agarwal
Abstract:
The role of entrepreneurial ethics is connected with materializing the core components of human life, and the flexible and gullible attributions dominate the materialization of human lifestyle and outreach in the age of the internet and globalization. One of the key bi-products of the age of information – Artificial Intelligence has become a relevant mechanism to materialize and understand human empathy and originality via various algorithmic policing methodologies with specific intricacies. Since it has a special connection with ethnocentrism – it has the potential to influence the approach of international law and politics owed to the rise of and approach towards perception and communication via populism in progressive and third world countries. The paper argues about the cultural persona of artificial intelligence, and its ontological resemblance in human life is connected with the ethnocentric treatment of cyberspace, with an analysis of the influence of the ethics of entrepreneurship in international politics. The paper further provides an analysis of fake news and misinformation as the sub-strata of communication strategies involving populism determined as a communication strategy and about the legal case of constitutional redemption in recent legislative developments in Europe, the U.S, and Asia with reference to certain important strategies, policy documentation, declarations, and legal instruments. The paper concludes that the capillaries of the anthropomorphic developments of cultural perception via towards artificial intelligence have a hidden and unstable connection with the common approach of entrepreneurial ethics, which influences populism to disrupt the peaceful order of international politics via some minor backlashes in the technological, legal and social realm of human life. Suggestions with the conclusion are hereby provided.Keywords: ethnocentrism, perception politics, populism, international law, slacktivism, artificial intelligence ethics, enculturation
Procedia PDF Downloads 1291978 Optimal Dynamic Economic Load Dispatch Using Artificial Immune System
Authors: I. A. Farhat
Abstract:
The dynamic economic dispatch (DED) problem is one of the complex, constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand. Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.Keywords: artificial immune system, dynamic economic dispatch, optimal economic operation, large-scale problem
Procedia PDF Downloads 2361977 Artificial Intelligence and Liability within Healthcare: A South African Analysis
Authors: M. Naidoo
Abstract:
AI in healthcare can have a massive positive effect in low-resource states like South Africa, where patients outnumber personnel greatly. However, the complexity and ‘black box’ aspects of these technologies pose challenges for the liability regimes of states. This is currently being discussed at the international level. This research finds that within the South African medical negligence context, the current common law fault-based inquiry proves to be wholly inadequate for patient redress. As a solution to this, this research paper culminates in legal reform recommendations designed to solve these issues.Keywords: artificial intelligence, law, liability, policy
Procedia PDF Downloads 1211976 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa
Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera
Abstract:
This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.Keywords: contamination, DRASTIC, groundwater, vulnerability, model
Procedia PDF Downloads 831975 Improving the Gain of a Multiband Antenna by Adding an Artificial Magnetic Conductor Metasurface
Authors: Amira Bousselmi
Abstract:
This article presents a PIFA antenna designed for geolocation applications (GNSS) operating on 1.278 GHz, 2.8 GHz, 5.7 GHz and 10 GHz. To improve the performance of the antenna, an artificial magnetic conductor structure (AMC) was used. Adding the antenna with AMC resulted in a measured gain of 4.78 dBi. The results of simulations and measurements are presented. CST Microwave Studio is used to design and compare antenna performance. An antenna design methodology, design and characterization of the AMC surface are described as well as the simulated and measured performances of the AMC antenna are then discussed. Finally, in Section V, there is a conclusion.Keywords: antenna multiband, global navigation system, AMC, Galeleo
Procedia PDF Downloads 771974 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm
Authors: Safayat Ali Shaikh
Abstract:
Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern
Procedia PDF Downloads 2031973 A.T.O.M.- Artificial Intelligent Omnipresent Machine
Authors: R. Kanthavel, R. Yogesh Kumar, T. Narendrakumar, B. Santhosh, S. Surya Prakash
Abstract:
This paper primarily focuses on developing an affordable personal assistant and the implementation of it in the field of Artificial Intelligence (AI) to create a virtual assistant/friend. The problem in existing home automation techniques is that it requires the usage of exact command words present in the database to execute the corresponding task. Our proposed work is ATOM a.k.a ‘Artificial intelligence Talking Omnipresent Machine’. Our inspiration came from an unlikely source- the movie ‘Iron Man’ in which a character called J.A.R.V.I.S has omnipresence, and device controlling capability. This device can control household devices in real time and send the live information to the user. This device does not require the user to utter the exact commands specified in the database as it can capture the keywords from the uttered commands, correlates the obtained keywords and perform the specified task. This ability to compare and correlate the keywords gives the user the liberty to give commands which are not necessarily the exact words provided in the database. The proposed work has a higher flexibility (due to its keyword extracting ability from the user input) comparing to the existing work Intelligent Home automation System (IHAS), is more accurate, and is much more affordable as it makes use of WI-FI module and raspberry pi 2 instead of ZigBee and a computer respectively.Keywords: home automation, speech recognition, voice control, personal assistant, artificial intelligence
Procedia PDF Downloads 3361972 An Investigation Into an Essential Property of Creativity, Which Is the First-Person Experience
Authors: Ukpaka Paschal
Abstract:
Margret Boden argues that a creative product is one that is new, surprising, and valuable as a result of the combination, exploration, or transformation involved in producing it. Boden uses examples of artificial intelligence systems that fit all of these criteria and argues that real creativity involves autonomy, intentionality, valuation, emotion, and consciousness. This paper provides an analysis of all these elements in order to try to understand whether they are sufficient to account for creativity, especially human creativity. This paper focuses on Generative Adversarial Networks (GANs), which is a class of artificial intelligence algorithms that are said to have disproved the common perception that creativity is something that only humans possess. This paper will then argue that Boden’s listed properties of creativity, which capture the creativity exhibited by GANs, are not sufficient to account for human creativity, and this paper will further identify “first-person phenomenological experience” as an essential property of human creativity. The rationale behind the proposed essential property is that if creativity involves comprehending our experience of the world around us into a form of self-expression, then our experience of the world really matters with regard to creativity.Keywords: artificial intelligence, creativity, GANs, first-person experience
Procedia PDF Downloads 1351971 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability
Procedia PDF Downloads 105