Search results for: analyst forecast dispersion
927 Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method
Authors: Abdulmagid A. Khattabi
Abstract:
The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases.Keywords: base alloy, matrix, hardness, thermal properties, base metal MMCs
Procedia PDF Downloads 354926 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles
Authors: S. Levitsky
Abstract:
Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid
Procedia PDF Downloads 304925 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 98924 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials
Authors: Sunita Kumawat, Sumit Kumar Vishwakarma
Abstract:
The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection
Procedia PDF Downloads 109923 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 238922 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 344921 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets
Authors: Ece Cigdem Mutlu, Burak Alakent
Abstract:
Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.Keywords: average run length, M-estimators, quality control, robust estimators
Procedia PDF Downloads 190920 Field Production Data Collection, Analysis and Reporting Using Automated System
Authors: Amir AlAmeeri, Mohamed Ibrahim
Abstract:
Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast
Procedia PDF Downloads 156919 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 7918 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 572917 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 72916 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 259915 Coupling Static Multiple Light Scattering Technique With the Hansen Approach to Optimize Dispersibility and Stability of Particle Dispersions
Authors: Guillaume Lemahieu, Matthias Sentis, Giovanni Brambilla, Gérard Meunier
Abstract:
Static Multiple Light Scattering (SMLS) has been shown to be a straightforward technique for the characterization of colloidal dispersions without dilution, as multiply scattered light in backscattered and transmitted mode is directly related to the concentration and size of scatterers present in the sample. In this view, the use of SMLS for stability measurement of various dispersion types has already been widely described in the literature. Indeed, starting from a homogeneous dispersion, the variation of backscattered or transmitted light can be attributed to destabilization phenomena, such as migration (sedimentation, creaming) or particle size variation (flocculation, aggregation). In a view to investigating more on the dispersibility of colloidal suspensions, an experimental set-up for “at the line” SMLS experiment has been developed to understand the impact of the formulation parameters on particle size and dispersibility. The SMLS experiment is performed with a high acquisition rate (up to 10 measurements per second), without dilution, and under direct agitation. Using such experimental device, SMLS detection can be combined with the Hansen approach to optimize the dispersing and stabilizing properties of TiO₂ particles. It appears that the dispersibility and the stability spheres generated are clearly separated, arguing that lower stability is not necessarily a consequence of poor dispersibility. Beyond this clarification, this combined SMLS-Hansen approach is a major step toward the optimization of dispersibility and stability of colloidal formulations by finding solvents having the best compromise between dispersing and stabilizing properties. Such study can be intended to find better dispersion media, greener and cheaper solvents to optimize particles suspensions, reduce the content of costly stabilizing additives or satisfy product regulatory requirements evolution in various industrial fields using suspensions (paints & inks, coatings, cosmetics, energy).Keywords: dispersibility, stability, Hansen parameters, particles, solvents
Procedia PDF Downloads 110914 A Prediction of Electrical Cost for High-Rise Building Construction
Authors: Picha Sriprachan
Abstract:
The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.Keywords: high-rise building construction, electrical cost, construction phase, architectural phase
Procedia PDF Downloads 390913 Loan Supply and Asset Price Volatility: An Experimental Study
Authors: Gabriele Iannotta
Abstract:
This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment
Procedia PDF Downloads 125912 Nonlinear Internal Waves in Rotating Ocean
Authors: L. A. Ostrovsky, Yu. A. Stepanyants
Abstract:
Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described.Keywords: Earth rotation, internal waves, nonlinear waves, solitons
Procedia PDF Downloads 672911 Flotation Recovery of Gold-Loaded Fine Activated Carbon Using Emulsified Diesel and Kerosene as Collectors
Authors: Emmanuel Jr. Ballad, Herman Mendoza
Abstract:
The recovery of fine activated carbon with adsorbed gold in the cyanidation tailings of a small-scale gold plant was investigated due to the high amount of gold present. In the study, collectors that were used are kerosene and diesel. Emulsification of the oils was done to improve its collecting property, thus also the recovery. It was found out that the best hydrophile lypophile balance (HLB) of emulsified diesel and kerosene oil is 13 and 12 respectively. The amount of surfactants (SPAN 20 and TWEEN 20) for the best stability of the emulsified oils was found to be 10% in both kerosene and diesel. Optical microscopy showed that the oil dispersion in the water forms spherical droplets like features. The higher the stability, the smaller the droplets and their number were increasing. The smaller droplets indicate better dispersion of oil in the water. Consequently, it will have a greater chance of oil and activated carbon particle interaction during flotation. Due to the interaction of dispersed oil phase with carbon, the hydrophobicity of the carbon will be improved and will be attached to the bubble. Thus, flotation recovery will be increased. Results showed that the recovery of the fine activated carbon using emulsified diesel or kerosene is three times more effective than using pure diesel or kerosene.Keywords: emulsified oils, flotation, hydrophile lyophile balance, non-ionic surfactants
Procedia PDF Downloads 380910 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano
Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das
Abstract:
Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption
Procedia PDF Downloads 415909 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 112908 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 583907 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 152906 Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road
Authors: Surachai Ampawasuvan, Supornchai Utainarumol
Abstract:
Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment.Keywords: peak rate, trips generation, fuel station, arterial road
Procedia PDF Downloads 408905 Solid Dispersions of Cefixime Using β-Cyclodextrin: Characterization and in vitro Evaluation
Authors: Nagasamy Venkatesh Dhandapani, Amged Awad El-Gied
Abstract:
Cefixime, a BCS class II drug, is insoluble in water but freely soluble in acetone and in alcohol. The aqueous solubility of cefixime in water is poor and exhibits exceptionally slow and intrinsic dissolution rate. In the present study, cefixime and β-Cyclodextrin (β-CD) solid dispersions were prepared with a view to study the effect and influence of β-CD on the solubility and dissolution rate of this poorly aqueous soluble drug. Phase solubility profile revealed that the solubility of cefixime was increased in the presence of β-CD and was classified as AL-type. Effect of variable, such as drug:carrier ratio, was studied. Physical characterization of the solid dispersion was characterized by Fourier transform infrared spectroscopy (FT-IR) and Differential scanning calorimetry (DSC). These studies revealed that a distinct loss of drug crystallinity in the solid molecular dispersions is ostensibly accounting for enhancement of dissolution rate in distilled water. The drug release from the prepared solid dispersion exhibited a first order kinetics. Solid dispersions of cefixime showed a 6.77 times fold increase in dissolution rate over the pure drug.Keywords: β-cyclodextrin, cefixime, dissolution, Kneading method, solid dispersions, release kinetics
Procedia PDF Downloads 316904 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait
Authors: Ahmed M. AlHasem
Abstract:
The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.Keywords: astronomy, cultural heritage, statistical analysis, weather prediction
Procedia PDF Downloads 122903 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 97902 Service Quality and Consumer Behavior on Metered Taxi Services
Authors: Nattapong Techarattanased
Abstract:
The purposes of this research are to make comparisons in respect of the behaviors on the use of the services of metered taxi classified by the demographic factor and to study the influence of the recognition on service quality having the effect on usage behaviors of metered taxi services of consumers in Bangkok Metropolitan Areas. The samples used in this research are 400 metered taxi service users in Bangkok Metropolitan Areas and use a questionnaire as the tool for collecting the data. Analysis statistics is mean and multiple regression analysis. Results of the research revealed that the consumers recognize the overall quality of services in each aspect include tangible aspects of the service, responses to customers, assurance on the confidence, understanding and knowing of customers which is rated at the moderate level except the aspect of the assurance on the confidence and trustworthiness which are rated at a high level. For the result of a hypothetical test, it is found that the quality in providing the services on the aspect of the assurance given to the customers has the effect on the usage behaviors of metered taxi services and the aspect of the frequency on the use of the services per month which in this connection. Such variable can forecast at one point nine percent (1.9%). In addition, quality in providing the services and the aspect of the responses to customers have the effect on the behaviors on the use of metered taxi services on the aspect of the expenses on the use of services per month which in this connection, such variable can forecast at two point one percent (2.1%).Keywords: consumer behavior, metered taxi service, satisfaction, service quality
Procedia PDF Downloads 223901 Case-Based Reasoning for Build Order in Real-Time Strategy Games
Authors: Ben G. Weber, Michael Mateas
Abstract:
We present a case-based reasoning technique for selecting build orders in a real-time strategy game. The case retrieval process generalizes features of the game state and selects cases using domain-specific recall methods, which perform exact matching on a subset of the case features. We demonstrate the performance of the technique by implementing it as a component of the integrated agent framework of McCoy and Mateas. Our results demonstrate that the technique outperforms nearest-neighbor retrieval when imperfect information is enforced in a real-time strategy game.Keywords: case based reasoning, real time strategy systems, requirements elicitation, requirement analyst, artificial intelligence
Procedia PDF Downloads 441900 Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking
Authors: Masaru Sumida
Abstract:
This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration.Keywords: fiber dispersion, headbox, pulp liquid, wake flow
Procedia PDF Downloads 385899 Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer
Authors: Zhang Tailong
Abstract:
Compatibility between sulfonated acetone-formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA and SAF together had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF. The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength.Keywords: copolymer-based grinding aids, superplasiticizer, compatibility, microstructure, cement, concrete
Procedia PDF Downloads 246898 Does Women Involvement in Politics Decrease Corruption? A Context Based Approach to the Corruption Rate Index of ASEAN Countries
Authors: Lu Anne A. Godinez, May Claudine I. Gador, Preacious G. Gumolon, Louiechi Von R. Mendoza, Neil Bryan N. Moninio
Abstract:
Gender equality and women empowerment is the third of eight Millennium Development Goals. Understanding corruption’s linkages to gender equality issues and how it impacts women’s empowerment is part of the broader process of advancing women’s rights and understanding the gender dimensions of democratic governance. Taking a long view of political (corruption index) and the social (women empowerment) dimension — a view from 2015 to 2030, a context based forecast was conducted to forecast the ASEAN corruption index in the next 15 years, answering the question: “Does women political involvement decrease corruption rate index of ASEAN countries in the next 15 years?” The study have established that there will be an increase women political involvement in the ASEAN countries in the next 15 years that will cause a drop on corruption rate index. There will be a significant decline on corruption rate index in 2030. This change entails reform not only in the political aspect of progress, but to the social aspect as well. Finally, the political aspect is increasing at a constant rate however a double or triple increase of the social aspect is seen to be the key solution for corruption.Keywords: women, women political involvement, corruption, gender equity index, economic participation, educational attainment, political empowerment, control of corruption, regulatory quality, rule of law, voice and accountability government effectiveness, political stability and corruption perception index
Procedia PDF Downloads 422