Search results for: Jesús Ruiz
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 231

Search results for: Jesús Ruiz

21 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 259
20 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance

Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta

Abstract:

Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.

Keywords: glass plates, human impact test, modal test, plate boundary conditions

Procedia PDF Downloads 307
19 Training in Communicational Skills in Students of Medicine: Differences in Bilingualism

Authors: Naiara Ozamiz Etcebarria, Sonia Ruiz De Azua Garcia, Agurtzane Ortiz Jauregi, Virginia Guillen Cañas

Abstract:

Introduction: The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes´ improvement and efficiency of health services. The ability of Active listening , empathy, assertiveness and social skills, are important abilities to develop in all professions in which there is a relationship with other people. In the field of health, it is even more important to have adequate qualities so that the treatment with the patient will be adequate and satisfactory. We conducted a research with students of third year in the Degree of Medicine with the objectives: - to know how the active listening, empathy, assertiveness and social skills of students are. - to know if there are differences according to different demographic variables, such as sex, language, age, number of siblings and interest in the subject. Material and Methods: The students of the Third year in the Degree of Medicine (N = 212) participated voluntarily. Sociodemographic data were collected. Descriptive and comparative analysis of the averages of the students with respect to active listening, empathy, assertiveness and social skills were performed. Once the questionnaires were collected, they were entered into the SPSS 21 database. Four communicational aspects were evaluated: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. The active listening questionnaire assesses these factors: Listening without interruption and less contradiction, Listening with 100% attention, Listening beyond words, Listening encouraging the other to go deeper. The TECA questionnaire of cognitive and affective empathy evaluates: Adoption of perspectives, Emotional Comprehension, Emphasizing stress, Empathic joy. The EHS questionnaire Social Skills Scale: Self-expression in social situations, Defending one's own rights as a consumer, Expressing anger or dissatisfaction, Refusing to do and cutting interactions off, Making requests, Initiating positive interactions with the other sex. The ACDA questionnaire Assertiveness Assessment Scale evaluates self-assertiveness and heteroaservitivity. Applicability: To train these skills is so important for clinical practice of medical students and these capabilities that can be measured in a longitudinal way time. Ethical-legal aspects: The data were anonymous. The study was approved by the Ethics Committee. Results: The students of the Third year in the Degree of Medicine (34.4% Basque speakers and 65.6% Spanish speakers) with average age 20.93, (27.8% men and 72.2% women). There are no differences in social skills between men and women. The Basque speaker students of are more heteroactive (ACDA) than Spanish students. Active listening has a high correlation with social skills, especially with self-expression in social situations. Listening without interruption has a high correlation with self-expression in social situations and initiating positive interactions with the opposite sex. Adoption of perspectives presents a high correlation with auto- assertiveness. Emotional understanding presents a high correlation with positive interactions with the opposite sex. Empathic joy correlates with self-assertiveness, self-expression in social situations, and initiating positive interactions with the opposite sex.

Keywords: active listening, assertiveness, communicational skills, empathy, students of medicine

Procedia PDF Downloads 303
18 A Cloud-Based Federated Identity Management in Europe

Authors: Jesus Carretero, Mario Vasile, Guillermo Izquierdo, Javier Garcia-Blas

Abstract:

Currently, there is a so called ‘identity crisis’ in cybersecurity caused by the substantial security, privacy and usability shortcomings encountered in existing systems for identity management. Federated Identity Management (FIM) could be solution for this crisis, as it is a method that facilitates management of identity processes and policies among collaborating entities without enforcing a global consistency, that is difficult to achieve when there are ID legacy systems. To cope with this problem, the Connecting Europe Facility (CEF) initiative proposed in 2014 a federated solution in anticipation of the adoption of the Regulation (EU) N°910/2014, the so-called eIDAS Regulation. At present, a network of eIDAS Nodes is being deployed at European level to allow that every citizen recognized by a member state is to be recognized within the trust network at European level, enabling the consumption of services in other member states that, until now were not allowed, or whose concession was tedious. This is a very ambitious approach, since it tends to enable cross-border authentication of Member States citizens without the need to unify the authentication method (eID Scheme) of the member state in question. However, this federation is currently managed by member states and it is initially applied only to citizens and public organizations. The goal of this paper is to present the results of a European Project, named eID@Cloud, that focuses on the integration of eID in 5 cloud platforms belonging to authentication service providers of different EU Member States to act as Service Providers (SP) for private entities. We propose an initiative based on a private eID Scheme both for natural and legal persons. The methodology followed in the eID@Cloud project is that each Identity Provider (IdP) is subscribed to an eIDAS Node Connector, requesting for authentication, that is subscribed to an eIDAS Node Proxy Service, issuing authentication assertions. To cope with high loads, load balancing is supported in the eIDAS Node. The eID@Cloud project is still going on, but we already have some important outcomes. First, we have deployed the federation identity nodes and tested it from the security and performance point of view. The pilot prototype has shown the feasibility of deploying this kind of systems, ensuring good performance due to the replication of the eIDAS nodes and the load balance mechanism. Second, our solution avoids the propagation of identity data out of the native domain of the user or entity being identified, which avoids problems well known in cybersecurity due to network interception, man in the middle attack, etc. Last, but not least, this system allows to connect any country or collectivity easily, providing incremental development of the network and avoiding difficult political negotiations to agree on a single authentication format (which would be a major stopper).

Keywords: cybersecurity, identity federation, trust, user authentication

Procedia PDF Downloads 166
17 Hydrographic Mapping Based on the Concept of Fluvial-Geomorphological Auto-Classification

Authors: Jesús Horacio, Alfredo Ollero, Víctor Bouzas-Blanco, Augusto Pérez-Alberti

Abstract:

Rivers have traditionally been classified, assessed and managed in terms of hydrological, chemical and / or biological criteria. Geomorphological classifications had in the past a secondary role, although proposals like River Styles Framework, Catchment Baseline Survey or Stroud Rural Sustainable Drainage Project did incorporate geomorphology for management decision-making. In recent years many studies have been attracted to the geomorphological component. The geomorphological processes and their associated forms determine the structure of a river system. Understanding these processes and forms is a critical component of the sustainable rehabilitation of aquatic ecosystems. The fluvial auto-classification approach suggests that a river is a self-built natural system, with processes and forms designed to effectively preserve their ecological function (hydrologic, sedimentological and biological regime). Fluvial systems are formed by a wide range of elements with multiple non-linear interactions on different spatial and temporal scales. Besides, the fluvial auto-classification concept is built using data from the river itself, so that each classification developed is peculiar to the river studied. The variables used in the classification are specific stream power and mean grain size. A discriminant analysis showed that these variables are the best characterized processes and forms. The statistical technique applied allows to get an individual discriminant equation for each geomorphological type. The geomorphological classification was developed using sites with high naturalness. Each site is a control point of high ecological and geomorphological quality. The changes in the conditions of the control points will be quickly recognizable, and easy to apply a right management measures to recover the geomorphological type. The study focused on Galicia (NW Spain) and the mapping was made analyzing 122 control points (sites) distributed over eight river basins. In sum, this study provides a method for fluvial geomorphological classification that works as an open and flexible tool underlying the fluvial auto-classification concept. The hydrographic mapping is the visual expression of the results, such that each river has a particular map according to its geomorphological characteristics. Each geomorphological type is represented by a particular type of hydraulic geometry (channel width, width-depth ratio, hydraulic radius, etc.). An alteration of this geometry is indicative of a geomorphological disturbance (whether natural or anthropogenic). Hydrographic mapping is also dynamic because its meaning changes if there is a modification in the specific stream power and/or the mean grain size, that is, in the value of their equations. The researcher has to check annually some of the control points. This procedure allows to monitor the geomorphology quality of the rivers and to see if there are any alterations. The maps are useful to researchers and managers, especially for conservation work and river restoration.

Keywords: fluvial auto-classification concept, mapping, geomorphology, river

Procedia PDF Downloads 367
16 The Theotokos of the Messina Missal as a Byzantine Icon in Norman Sicily: A Study on Patronage and Devotion

Authors: Jesus Rodriguez Viejo

Abstract:

The aim of this paper is to study cross-cultural interactions between the West and Byzantium, in the fields of art and religion, by analyzing the decoration of one luxury manuscript. The Spanish National Library is home to one of the most extraordinary examples of illuminated manuscript production of Norman Sicily – the Messina Missal. Dating from the late twelfth century, this liturgical book was the result of the intense activity of artistic patronage of an Englishman, Richard Palmer. Appointed bishop of the Sicilian city in the second half of the century, Palmer set a painting workshop attached to his cathedral. The illuminated manuscripts produced there combine a clear Byzantine iconographic language with a myriad of elements imported from France, such as a large number of decorated initials. The most remarkable depiction contained in the Missal is that of the Theotokos (fol. 80r). Its appearance immediately recalls portative Byzantine icons of the Mother of God in South Italy and Byzantium and implies the intervention of an artist familiar with icon painting. The richness of this image is a clear proof of the prestige that Byzantine art enjoyed in the island after the Norman takeover. The production of the school of Messina under Richard Palmer could be considered a counterpart in the field of manuscript illumination of the court art of the Sicilian kings in Palermo and the impressive commissions for the cathedrals of Monreale and Cefalù. However, the ethnic composition of Palmer’s workshop has never been analyzed and therefore, we intend to shed light on the permanent presence of Greek-speaking artists in Norman Messina. The east of the island was the last stronghold of the Greeks and soon after the Norman conquest, the previous exchanges between the cities of this territory and Byzantium restarted again, mainly by way of trade. Palmer was not a Norman statesman, but a churchman and his love for religion and culture prevailed over the wars and struggles for power of the Sicilian kingdom in the central Mediterranean. On the other hand, the representation of the Theotokos can prove that Eastern devotional approaches to images were still common in the east of the island more than a century after the collapse of Byzantine rule. Local Norman lords repeatedly founded churches devoted to Greek saints and medieval Greek-speaking authors were widely copied in Sicilian scriptoria. The Madrid Missal and its Theotokos are doubtless the product of Western initiative but in a land culturally dominated by Byzantium. Westerners, such as Palmer and his circle, could have been immersed in this Hellenophile culture and therefore, naturally predisposed to perform prayers and rituals, in both public and private contexts, linked to ideas and practices of Greek origin, such as the concept of icon.

Keywords: history of art, byzantine art, manuscripts, norman sicily, messina, patronage, devotion, iconography

Procedia PDF Downloads 350
15 Phage Display-Derived Vaccine Candidates for Control of Bovine Anaplasmosis

Authors: Itzel Amaro-Estrada, Eduardo Vergara-Rivera, Virginia Juarez-Flores, Mayra Cobaxin-Cardenas, Rosa Estela Quiroz, Jesus F. Preciado, Sergio Rodriguez-Camarillo

Abstract:

Bovine anaplasmosis is an infectious, tick-borne disease caused mainly by Anaplasma marginale; typical signs include anemia, fever, abortion, weight loss, decreased milk production, jaundice, and potentially death. Sick bovine can recover when antibiotics are administered; however, it usually remains as carrier for life, being a risk of infection for susceptible cattle. Anaplasma marginale is an obligate intracellular Gram-negative bacterium with genetic composition highly diverse among geographical isolates. There are currently no vaccines fully effective against bovine anaplasmosis; therefore, the economic losses due to disease are present. Vaccine formulation became a hard task for several pathogens as Anaplasma marginale, but peptide-based vaccines are an interesting proposal way to induce specific responses. Phage-displayed peptide libraries have been proved one of the most powerful technologies for identifying specific ligands. Screening of these peptides libraries is also a tool for studying interactions between proteins or peptides. Thus, it has allowed the identification of ligands recognized by polyclonal antiserums, and it has been successful for the identification of relevant epitopes in chronic diseases and toxicological conditions. Protective immune response to bovine anaplasmosis includes high levels of immunoglobulins subclass G2 (IgG2) but not subclass IgG1. Therefore, IgG2 from the serum of protected bovine can be useful to identify ligands, which can be part of an immunogen for cattle. In this work, phage display random peptide library Ph.D. ™ -12 was incubating with IgG2 or blood sera of immunized bovines against A. marginale as targets. After three rounds of biopanning, several candidates were selected for additional analysis. Subsequently, their reactivity with sera immunized against A. marginale, as well as with positive and negative sera to A. marginale was evaluated by immunoassays. A collection of recognized peptides tested by ELISA was generated. More than three hundred phage-peptides were separately evaluated against molecules which were used during panning. At least ten different peptides sequences were determined from their nucleotide composition. In this approach, three phage-peptides were selected by their binding and affinity properties. In the case of the development of vaccines or diagnostic reagents, it is important to evaluate the immunogenic and antigenic properties of the peptides. Immunogenic in vitro and in vivo behavior of peptides will be assayed as synthetic and as phage-peptide for to determinate their vaccine potential. Acknowledgment: This work was supported by grant SEP-CONACYT 252577 given to I. Amaro-Estrada.

Keywords: bovine anaplasmosis, peptides, phage display, veterinary vaccines

Procedia PDF Downloads 141
14 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods

Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla

Abstract:

Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.

Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range

Procedia PDF Downloads 108
13 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal

Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas

Abstract:

One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.

Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity

Procedia PDF Downloads 311
12 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis

Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos

Abstract:

Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.

Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent

Procedia PDF Downloads 278
11 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 222
10 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 153
9 Reflective and Collaborative Professional Development Program in Secondary Education to Improve Student’s Oral Language

Authors: Marta Gràcia, Ana Luisa Adam-Alcocer, Jesús M. Alvarado, Verónica Quezada, Tere Zarza, Priscila Garza

Abstract:

In secondary education, integrating linguistic content and reflection on it is a crucial challenge that should be included in course plans to enhance students' oral communication competence. In secondary education classrooms, a continuum can be identified in relation to teaching methodologies: 1) the traditional teacher-dominated transmission approach, which is described as that in which teachers transmit content to students unidirectionally; 2) dialogical, bidirectional teaching approach that encourages students to adopt a critical vision of the information provided by the teacher or that is generated through students’ discussion. In this context, the EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context-Decision Support System) digital instrument has emerged to help teachers in transforming their classes into spaces for communication, dialogue, reflection, evaluation of the learning process, teaching linguistic contents, and to develop curricular competencies. The tool includes various resources, such as a tutorial with the objectives and an initial screen for teachers to describe the class to be evaluated. One of the main resources of the digital instrument consists of 30 items-actions with three qualitative response options (green, orange, and red face emoji) grouped in five dimensions. In the context of the participation of secondary education teachers in a professional development program using EVALOE-DSS, a digital tool resource aimed to generate more participatory, interactive, dialogic classes, the objectives of the study were: 1) understanding the changes in classrooms’ dynamics and in the teachers’ strategies during their participation in the professional developmental program; 2) analyzing the impact of these changes in students’ oral language development according to their teachers; 3) Deeping on the impact of these changes in the students’ assessment of the classes and the self-assessment of oral competence; 4) knowing teachers’ assessment and reflections about their participation in the professional developmental program. Participants were ten teachers of different subjects and 250 students of secondary education (16-18 years) schools in Spain. The principal instrument used was the digital tool EVALOE-DSS. For 6 months, teachers used the digital tool to reflect on their classes, assess them (their actions and their students’ actions), make decisions, and introduce changes in their classes to be more participatory, interactive, and reflective about linguistic contents. Other collecting data instruments and techniques used during the study were: 1) a questionnaire to assess students’ oral language competence before and at the end of the study, 2) a questionnaire for students’ assessment of the characteristics of classes, 3) teachers’ meetings during the professional developmental program to reflect collaboratively on their experience, 4) questionnaire to assess teacher’s experience during their participation in the professional developmental program, 5) focus group meetings between the teachers and two researchers at the end of the study. The results showed relevant changes in teaching strategies, in the dynamics of the classes, which were more interactive, participative, dialogic and self-managed by the students. Both teachers and students agree about the progressive classes’ transformation into spaces for communication, discussion, and reflection on the language, its development, and its use as an essential instrument to develop curricular competencies.

Keywords: digital tool, individual and collaborative reflection, oral language competence, professional development program, secondary education

Procedia PDF Downloads 36
8 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 94
7 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel

Authors: Bill Wason

Abstract:

143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050

Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF

Procedia PDF Downloads 103
6 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions

Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales

Abstract:

Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.

Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit

Procedia PDF Downloads 96
5 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow

Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez

Abstract:

Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.

Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n

Procedia PDF Downloads 281
4 Chain Networks on Internationalization of SMEs: Co-Opetition Strategies in Agrifood Sector

Authors: Emilio Galdeano-Gómez, Juan C. Pérez-Mesa, Laura Piedra-Muñoz, María C. García-Barranco, Jesús Hernández-Rubio

Abstract:

The situation in which firms engage in simultaneous cooperation and competition with each other is a phenomenon known as co-opetition. This scenario has received increasing attention in business economics and management analyses. In the domain of supply chain networks and for small and medium-sized enterprises, SMEs, these strategies are of greater relevance given the complex environment of globalization and competition in open markets. These firms face greater challenges regarding technology and access to specific resources due to their limited capabilities and limited market presence. Consequently, alliances and collaborations with both buyers and suppliers prove to be key elements in overcoming these constraints. However, rivalry and competition are also regarded as major factors in successful internationalization processes, as they are drivers for firms to attain a greater degree of specialization and to improve efficiency, for example enabling them to allocate scarce resources optimally and providing incentives for innovation and entrepreneurship. The present work aims to contribute to the literature on SMEs’ internationalization strategies. The sample is constituted by a panel data of marketing firms from the Andalusian food sector and a multivariate regression analysis is developed, measuring variables of co-opetition and international activity. The hierarchical regression equations method has been followed, thus resulting in three estimated models: the first one excluding the variables indicative of channel type, while the latter two include the international retailer chain and wholesaler variable. The findings show that the combination of several factors leads to a complex scenario of inter-organizational relationships of cooperation and competition. In supply chain management analyses, these relationships tend to be classified as either buyer-supplier (vertical level) or supplier-supplier relationships (horizontal level). Several buyers and suppliers tend to participate in supply chain networks, and in which the form of governance (hierarchical and non-hierarchical) influences cooperation and competition strategies. For instance, due to their market power and/or their closeness to the end consumer, some buyers (e.g. large retailers in food markets) can exert an influence on the selection and interaction of several of their intermediate suppliers, thus endowing certain networks in the supply chain with greater stability. This hierarchical influence may in turn allow these suppliers to develop their capabilities (e.g. specialization) to a greater extent. On the other hand, for those suppliers that are outside these networks, this environment of hierarchy, characterized by a “hub firm” or “channel master”, may provide an incentive for developing their co-opetition relationships. These results prove that the analyzed firms have experienced considerable growth in sales to new foreign markets, mainly in Europe, dealing with large retail chains and wholesalers as main buyers. This supply industry is predominantly made up of numerous SMEs, which has implied a certain disadvantage when dealing with the buyers, as negotiations have traditionally been held on an individual basis and in the face of high competition among suppliers. Over recent years, however, cooperation among these marketing firms has become more common, for example regarding R&D, promotion, scheduling of production and sales.

Keywords: co-petition networks, international supply chain, maketing agrifood firms, SMEs strategies

Procedia PDF Downloads 79
3 A Tool to Provide Advanced Secure Exchange of Electronic Documents through Europe

Authors: Jesus Carretero, Mario Vasile, Javier Garcia-Blas, Felix Garcia-Carballeira

Abstract:

Supporting cross-border secure and reliable exchange of data and documents and to promote data interoperability is critical for Europe to enhance sector (like eFinance, eJustice and eHealth). This work presents the status and results of the European Project MADE, a Research Project funded by Connecting Europe facility Programme, to provide secure e-invoicing and e-document exchange systems among Europe countries in compliance with the eIDAS Regulation (Regulation EU 910/2014 on electronic identification and trust services). The main goal of MADE is to develop six new AS4 Access Points and SMP in Europe to provide secure document exchanges using the eDelivery DSI (Digital Service Infrastructure) amongst both private and public entities. Moreover, the project demonstrates the feasibility and interest of the solution provided by providing several months of interoperability among the providers of the six partners in different EU countries. To achieve those goals, we have followed a methodology setting first a common background for requirements in the partner countries and the European regulations. Then, the partners have implemented access points in each country, including their service metadata publisher (SMP), to allow the access to their clients to the pan-European network. Finally, we have setup interoperability tests with the other access points of the consortium. The tests will include the use of each entity production-ready Information Systems that process the data to confirm all steps of the data exchange. For the access points, we have chosen AS4 instead of other existing alternatives because it supports multiple payloads, native web services, pulling facilities, lightweight client implementations, modern crypto algorithms, and more authentication types, like username-password and X.509 authentication and SAML authentication. The main contribution of MADE project is to open the path for European companies to use eDelivery services with cross-border exchange of electronic documents following PEPPOL (Pan-European Public Procurement Online) based on the e-SENS AS4 Profile. It also includes the development/integration of new components, integration of new and existing logging and traceability solutions and maintenance tool support for PKI. Moreover, we have found that most companies are still not ready to support those profiles. Thus further efforts will be needed to promote this technology into the companies. The consortium includes the following 9 partners. From them, 2 are research institutions: University Carlos III of Madrid (Coordinator), and Universidad Politecnica de Valencia. The other 7 (EDICOM, BIZbrains, Officient, Aksesspunkt Norge, eConnect, LMT group, Unimaze) are private entities specialized in secure delivery of electronic documents and information integration brokerage in their respective countries. To achieve cross-border operativity, they will include AS4 and SMP services in their platforms according to the EU Core Service Platform. Made project is instrumental to test the feasibility of cross-border documents eDelivery in Europe. If successful, not only einvoices, but many other types of documents will be securely exchanged through Europe. It will be the base to extend the network to the whole Europe. This project has been funded under the Connecting Europe Facility Agreement number: INEA/CEF/ICT/A2016/1278042. Action No: 2016-EU-IA-0063.

Keywords: security, e-delivery, e-invoicing, e-delivery, e-document exchange, trust

Procedia PDF Downloads 265
2 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication

Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García

Abstract:

Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.

Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV

Procedia PDF Downloads 276
1 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 222