Search results for: FRP (Fiber Reinforced Polymer)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3368

Search results for: FRP (Fiber Reinforced Polymer)

3158 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties

Procedia PDF Downloads 107
3157 Behavior of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in the research of advanced methods to increase the reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with the additional concrete slab in combination with externally bonded fibre-reinforced polymer. The study evaluates deflection of a selected group of timber beams with concrete slab and additional CFRP reinforcement using different calculating methods and observes differences in results from different calculating methods. An elastic calculation method and evaluation with FEM analysis software were used.

Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, theoretical analysis

Procedia PDF Downloads 314
3156 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 258
3155 Use of PET Fibers for Enhancing the Ductility of Exterior RC Beam-Column Connections Subjected to Reversed Cyclic Loading

Authors: Comingstarful Marthong, Shembiang Marthong

Abstract:

Application of Polyethylene terephthalate (PET) fiber for enhancing the seismic performance of exterior RC beam-column connections in substitution of steel fibers is experimentally investigated. The study involves the addition of Polyethylene terephthalate (PET) fiber-reinforced concrete, i.e., PFRC at the joint region of the connection. The PET fiber of 0.5% volume fraction used in the PFRC mix is obtained by hand cutting of post-consumer PET bottles. Specimens design as per relevant codes was casted and tested to reverse cyclic loading. PFRC specimen was also casted and subjected to similar loading sequence. Test results established that addition of PET fibers in the joint region is effective in enhancing the displacement ductility and energy dissipation capacity. The improvement of damage indices and principal tensile stresses of PFRC specimens gave experimental evidence of the suitability of PET fibers as a discrete reinforcement in the substitution of steel fiber for structural use.

Keywords: beam-column connections, polyethylene terephthalate fibers reinforced concrete, joint region, ductility, seismic capacity

Procedia PDF Downloads 279
3154 Study on the Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Bamboo fiber (BF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, bamboo composites were manufactured using different percentages of fiber, which were varying from 25-65% on the total weight of the composites. To fabricate the BF/PP composites untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical, and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact, and bending properties were observed precisely. Maximum tensile strength (TS) and bending strength (BS) were found for 50 wt% fiber composites, 65 MPa, and 85.5 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 5.73 GPa and 7.85 GPa respectively. The BF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (i.e. 10, 20, 30, 40, 50 and 60 kGy doses). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 30.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray) gamma dose showed better mechanical properties than other doses. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated BF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated BF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: bamboo fiber, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 133
3153 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites

Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran

Abstract:

Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.

Keywords: flexural properties, glutarylation, glutaric anhydride, tensile properties

Procedia PDF Downloads 192
3152 Modifications in Design of Lap Joint of Fiber Metal Laminates

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The continuous development and exploitation of materials and designs have diverted the attention of the world towards the use of robust composite materials known as fiber-metal laminates in many high-performance applications. The hybrid structure of fiber metal laminates makes them a material of choice for various applications such as aircraft skin panels, fuselage floorings, door panels and other load bearing applications. The synergistic effect of properties of metals and fibers reinforced laminates are responsible for their high damage tolerance as the metal element provides better fatigue and impact properties, while high stiffness and better corrosion properties are inherited from the fiber reinforced matrix systems. They are mostly used as a layered structure in different joint configurations such as lap and but joints. The FML layers are usually bonded with each other using either mechanical fasteners or adhesive bonds. This research work is also focused on modification of an adhesive bonded joint as a single lap joint of carbon fibers based CARALL FML has been modified to increase interlaminar shear strength and avoid delamination. For this purpose different joint modification techniques such as the introduction of spews and shoulder to modify the bond shape and use of nanofillers such as carbon nano-tubes as a reinforcement in the adhesive materials, have been utilized to improve shear strength of lap joint of the adhesively bonded FML layers. Both the simulation and experimental results showed that lap joint with spews and shoulders configuration have better properties due to stress distribution over a large area at the corner of the joint. The introduction of carbon nanotubes has also shown a positive effect on shear stress and joint strength as they act as reinforcement in the adhesive bond material.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 299
3151 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 287
3150 Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods.

Keywords: coir fiber, polyester composites, low velocity impact, Charpy impact test, drop-weight impact test

Procedia PDF Downloads 452
3149 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 454
3148 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 298
3147 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber

Authors: Stanislav Perepechko

Abstract:

Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.

Keywords: waste-free air filtration, concrete, basalt fiber, building automation

Procedia PDF Downloads 428
3146 Electro Spinning in Nanotechnology

Authors: Mahoud Alfama, Meloud Yones, Abdelbaset Zroga, Abdelati Elalem

Abstract:

Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. In this paper we examine -electrospinning by providing a brief description of the theory behind the process examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.

Keywords: nanotechnology, electro spinning, reinforced materials

Procedia PDF Downloads 289
3145 An Analysis on Fibre-Reinforced Composite Material Usage on Urban Furniture

Authors: Nilgun Becenen

Abstract:

In this study, the structural properties of composite materials with the plastic matrix, which are used in body parts of urban furniture were investigated. Surfaces of the specimens were observed by scanning electron microscopy (SEM: JSM-5200, JEOL) and Climatic environmental test analyses in laboratory conditions were used to analyze the performance of the composite samples. Climate conditions were determined as follow; 3 hour working under the conditions of -10 ºC heat and 20 % moisture, Heating until 45 ºC for 4 hours, 3 hour work at 45 ºC, 3 hour work under the conditions of 45 ºC heat and 80 % moisture, Cooling at -10 ºC for 4 hours. In this cycle, the atmospheric conditions that urban furniture would be exposed to in the open air were taken into consideration. Particularly, sudden heat changes and humidity effect were investigated. The climate conditions show that performance in Low Temperatures: The endurance isn’t affected, hardness does not change, tensile, bending and impact resistance does not change, the view isn’t affected. It has a high environmental performance.

Keywords: fibre-reinforced material, glass fiber, textile science, polymer composites

Procedia PDF Downloads 249
3144 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 445
3143 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP

Authors: Faisal Islam, J. Ramkumar

Abstract:

The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.

Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)

Procedia PDF Downloads 530
3142 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: Mustafa Reşit Haboğlu, Ali Kurşun , Şafak Aksoy, Halil Aykul, Numan Behlül Bektaş

Abstract:

A thermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: laminated composites, thermo elastic stress, finite element method.

Procedia PDF Downloads 496
3141 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester

Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar

Abstract:

Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.

Keywords: Defects, Forming, Impact, Induced properties, Textiles

Procedia PDF Downloads 139
3140 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel

Procedia PDF Downloads 112
3139 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 56
3138 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers

Authors: Salahaldein Alsadey, Issa Amaish

Abstract:

Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing sisal fibers as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse recycled aggregate replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of sisal fiber-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without sisal fiber. Test results revealed that concrete samples incorporating sisal fiber exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of sisal fiber.

Keywords: sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management

Procedia PDF Downloads 73
3137 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia PDF Downloads 398
3136 Punching Shear Strengthening of Reinforced Concrete Flat Slabs Using Internal Square Patches of Carbon Fiber Reinforced Polymer

Authors: Malik Assi

Abstract:

This research presents a strengthening technique for enhancing the punching shear resistance of concrete flat slabs. Internal square patches of CFRP were centrally installed inside 450*450mm concrete panels during casting at a chosen distance from the tension face to produce six simply supported samples. The dimensions of those patches ranged from 50*50mm to 360*360mm. All the examined slabs contained the same amount of tensile reinforcement, had identical dimensions, were designed according to the American Concrete Institute code (ACI) and tested to failure. Compared to the control unstrengthened spacemen, all the strengthened slabs have shown an enhancement in punching capacity and stiffness. This enhancement has been found to be proportional to the area of the installed CFRP patches. In addition to the reasonably enhanced stiffness and punching shear, this strengthening technique can change the slab failure mode from shear to flexural.

Keywords: CFRP patches, Flat slabs, Flexural, Stiffness, Punching shear

Procedia PDF Downloads 266
3135 Reinforced Concrete, Problems and Solutions: A Literature Review

Authors: Omar Alhamad, Waleed Eid

Abstract:

Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.

Keywords: reinforced concrete, treatment, concrete, corrosion, seismic, cracks

Procedia PDF Downloads 152
3134 Reinforcing Fibre Reinforced Polymer (FRP) Bridge Decks with Steel Plates

Authors: M. Alpaslan Koroglu

Abstract:

Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative, and they have offered many advantages, and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel with steel plates was evaluated by means of FE analysis.

Keywords: FRP, deck, bridge, finite element

Procedia PDF Downloads 475
3133 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap

Authors: Furqan Farooq, Arslan Akbar, Sana Gul

Abstract:

Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.

Keywords: seismic design, carbon fiber, strengthening, ductility

Procedia PDF Downloads 201
3132 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Work has three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. Length of steel fiber was 26 mm, diameter 0.5 mm. On the obtained force- displacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. Surface of fiber channel in concrete matrix after pull-out test (fiber angle to pulling out force direction 70°). At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiber concrete prisms (with dimensions 10x10x40 cm) subjected to 4-point bending. After testing was analyzed main crack. On the main crack’s both surfaces were recognized all pulled out fibers their locations, angles to crack surface and lengths of pull-out fibers parts. At the third stage elaborated prediction model for the fiber-concrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack.

Keywords: fiberconcrete, pull-out, fiber channel, layered fiberconcrete

Procedia PDF Downloads 439
3131 Experimental Damping Performance of Composite Materials with Different Fibre Orientations

Authors: Ferhat Kadioglu

Abstract:

A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.

Keywords: composite materials, damping values, dynamic properties, non-contact measurements

Procedia PDF Downloads 348
3130 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test

Procedia PDF Downloads 419
3129 Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer

Authors: Srutirekha Giri, Manoranjan Sahoo, Anuradha Das, Pravanjan Mallick, Biswajit Mallick

Abstract:

Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc.

Keywords: Ion irradiation, mesophase, nanocrystallites, polymer

Procedia PDF Downloads 200