Search results for: saturated soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3313

Search results for: saturated soil

973 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel

Authors: Bill Wason

Abstract:

143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050

Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF

Procedia PDF Downloads 101
972 Effect of Anisotropy and Heterogeneity on Bearing Capacity of Shallow Foundations

Authors: S. A. Naeini, A. Mahigir

Abstract:

Naturally occurring cohesive soil deposits are inherently anisotropic with respect to different properties amongst which is the shear strength. The anisotropy is primary due to the process of sedimentation followed by predominantly one-dimensional consolidation. However, most soils in their natural states exhibit some anisotropy with respect to shear strength and some non-homogeneity with respect to depth. In this paper the standard Mohr-Coulomb yield criterion was modified to consider the anisotropic shear strength properties. The term non-homogeneity used in this paper refers to only the cohesion intercept which is assumed to vary linearly with depth. The effect of both anisotropy and deterministic non-homogeneity on bearing capacity of shallow foundation was investigated using finite difference method. Result of numerical analysis indicates that the cohesion anisotropy has a significant effect on bearing capacity of shallow foundation. Furthermore, the linear and bilinear heterogeneity affects the bearing capacity in a similar way although the anisotropy issue emerges to be more important as far as shallow foundations are considered.

Keywords: anisotropic ratio, finite difference analysis, bearing capacity, heterogeneity

Procedia PDF Downloads 267
971 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins

Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova

Abstract:

Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.

Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins

Procedia PDF Downloads 164
970 Investigation on the Changes in the Chemical Composition and Ecological State of Soils Contaminated with Heavy Metals

Authors: Metodi Mladenov

Abstract:

Heavy metals contamination of soils is a big problem mainly as a result of industrial production. From this point of view, this is of interests the processes for decontamination of soils for crop of production with low content of heavy metals and suitable for consumption from the animals and the peoples. In the current article, there are presented data for established changes in chemical composition and ecological state on soils contaminated from non-ferrous metallurgy manufacturing, for seven years time period. There was done investigation on alteration of pH, conductivity and contain of the next elements: As, Cd, Cu, Cr, Ni, Pb, Zn, Co, Mn and Al. Also, there was done visual observations under the processes of recovery of root-inhabitable soil layer and reforestation. Obtained data show friendly changes for the investigated indicators pH and conductivity and decreasing of content of some form analyzed elements. Visual observations show augmentation of plant cover areas and change in species structure with increase of number of shrubby and wood specimens.

Keywords: conductivity, contamination of soils, chemical composition, inductively coupled plasma–optical emission spectrometry, heavy metals, visual observation

Procedia PDF Downloads 178
969 Selenium Content in Agricultural Soils and Wheat from the Balkan Peninsula

Authors: S. Krustev, V. Angelova, P. Zaprjanova

Abstract:

Selenium (Se) is an essential micro-nutrient for human and animals but it is highly toxic. Its organic compounds play an important role in biochemistry and nutrition of the cells. Concentration levels of this element in the different regions of the world vary considerably. This study aimed to compare the availability and levels of the Se in some rural areas of the Balkan Peninsula and relationship with the concentrations of other trace elements. For this purpose soil samples and wheat grains from different regions of Bulgaria, Serbia, Nord Macedonia, Romania, and Greece situated far from large industrial centers have been analyzed. The main methods for their determination were the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels from the main grain-producing regions of the Balkan Peninsula were determined and systematized. The presented results confirm the low levels of Se in this region: 0.222– 0.962 mg.kg-1 in soils and 0.001 - 0.005 mg.kg-1 in wheat grains and require measures to offset the effect of this deficiency.

Keywords: agricultural soils, balkan peninsula, rural areas, selenium

Procedia PDF Downloads 130
968 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 552
967 A Simple Device for in-Situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Couste, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: simple shear, friction angle, Bekker parameters, device, regolith

Procedia PDF Downloads 506
966 Strategies for Drought Adpatation and Mitigation via Wastewater Management

Authors: Simrat Kaur, Fatema Diwan, Brad Reddersen

Abstract:

The unsustainable and injudicious use of natural renewable resources beyond the self-replenishment limits of our planet has proved catastrophic. Most of the Earth’s resources, including land, water, minerals, and biodiversity, have been overexploited. Owing to this, there is a steep rise in the global events of natural calamities of contrasting nature, such as torrential rains, storms, heat waves, rising sea levels, and megadroughts. These are all interconnected through common elements, namely oceanic currents and land’s the green cover. The deforestation fueled by the ‘economic elites’ or the global players have already cleared massive forests and ecological biomes in every region of the globe, including the Amazon. These were the natural carbon sinks prevailing and performing CO2 sequestration for millions of years. The forest biomes have been turned into mono cultivation farms to produce feedstock crops such as soybean, maize, and sugarcane; which are one of the biggest green house gas emitters. Such unsustainable agriculture practices only provide feedstock for livestock and food processing industries with huge carbon and water footprints. These are two main factors that have ‘cause and effect’ relationships in the context of climate change. In contrast to organic and sustainable farming, the mono-cultivation practices to produce food, fuel, and feedstock using chemicals devoid of the soil of its fertility, abstract surface, and ground waters beyond the limits of replenishment, emit green house gases, and destroy biodiversity. There are numerous cases across the planet where due to overuse; the levels of surface water reservoir such as the Lake Mead in Southwestern USA and ground water such as in Punjab, India, have deeply shrunk. Unlike the rain fed food production system on which the poor communities of the world relies; the blue water (surface and ground water) dependent mono-cropping for industrial and processed food create water deficit which put the burden on the domestic users. Excessive abstraction of both surface and ground waters for high water demanding feedstock (soybean, maize, sugarcane), cereal crops (wheat, rice), and cash crops (cotton) have a dual and synergistic impact on the global green house gas emissions and prevalence of megadroughts. Both these factors have elevated global temperatures, which caused cascading events such as soil water deficits, flash fires, and unprecedented burning of the woods, creating megafires in multiple continents, namely USA, South America, Europe, and Australia. Therefore, it is imperative to reduce the green and blue water footprints of agriculture and industrial sectors through recycling of black and gray waters. This paper explores various opportunities for successful implementation of wastewater management for drought preparedness in high risk communities.

Keywords: wastewater, drought, biodiversity, water footprint, nutrient recovery, algae

Procedia PDF Downloads 100
965 Radium Equivalent and External Hazard Indices of Trace Elements Concentrations in Aquatic Species by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Authors: B. G. Muhammad, S. M. Jafar

Abstract:

Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were employed to analyze the level of trace elements concentrations in sediment samples and their bioaccumulation in some aquatic species selected randomly from surface water resources in the Northern peninsula of Malaysia. The NAA results of the sediment samples indicated a wide range in concentration of different elements were observed. Fe, K, and Na were found to have major concentration values that ranges between 61,000 ± 1400 to 4,500 ± 100 ppm, 20100±1000 to 3100±600 and 3,100±600 and 200±10 ppm, respectively. Traces of heavy metals with much more contamination health concern, such as Cr and As, were also identified in many of the samples analyzed. The average specific activities of 40K, 232Th and 226Ra in soil and the corresponding radium equivalent activity and the external hazard index were all found to be lower than the maximum permissible limits (370 Bq kg-1 and 1).

Keywords: external hazard index, Neutron Activation Analysis, radium equivalent, trace elements concentrations

Procedia PDF Downloads 426
964 Efficacy of Nemafric-BL Phytonematicide on Suppression of Root-Knot Nematodes and Growth of Tomato Plants

Authors: Pontsho E. Tseke, Phatu W. Mashela

Abstract:

Cucurbitacin-containing phytonematicides had been consistent in suppressing root-knot (Meloidogyne species) when used in dried crude form, with limited evidence whether the efficacy could be affected when fresh fruits were used during fermentation. The objective of this study was to determine the influence of Nemafric-BL phytonematicide prepared using fermented crude extracts of fresh fruit from wild watermelon (Cucumis africanus) on the growth of tomato (Solanum lycopersicum) plants and suppression of Meloidogyne species. Seedlings of tomato cultivar ‘Floradade’ were inoculated with 3 000 eggs and second-stage juveniles (J2) of M. incognita race 2 in pot trials, with treatments comprising 0, 2, 4, 8, 16, 32 and 64 % Nemafric-BL phytonematicide. At 56 days after inoculation, the phytonematicide reduced eggs and J2 in roots by 84-97%, J2 in soil by 49-96% and total nematodes by 70-97%. Plant variables and concentrations of Nemafric-BL phytonematicide exhibited positive quadratic relations, with 74-98% associations. In conclusion, fresh fruit of C. africanus could be used for the preparation of Nemafric-BL phytonematicide, particularly in cases where the dry infrastructure is not available.

Keywords: Cucurbitacin B, density-dependent growth, effective microorganisms, quadratic relations

Procedia PDF Downloads 182
963 Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed

Authors: Zaenal Mutaqin

Abstract:

The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed.

Keywords: conservation, erosion, SWAT analysis, watersheed

Procedia PDF Downloads 290
962 Modeling of Digital and Settlement Consolidation of Soil under Oedomete

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, artificial defect, NDT, ultrasonic testing

Procedia PDF Downloads 330
961 A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably.

Keywords: tunnel, FLAC2D, settlement, dynamic analysis

Procedia PDF Downloads 126
960 Removal of Per- and Polyfluoroalkyl Substances (PFASs) Contaminants from the Aqueous Phase Using Chitosan Beads

Authors: Rahim Shahrokhi, Junboum Park

Abstract:

Per- and Polyfluoroalkyl Substances (PFASs) are environmentally persistent halogenated hydrocarbons that have been widely used in many industrial and commercial applications. Recently, contaminating the soil and groundwater due to the ubiquity of PFAS in environments has raised great concern. Adsorption technology is one of the most promising methods for PFAS removal. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, which render it a good adsorbent. This study has tried to enhance the adsorption capacity of chitosan by grafting more amine functional groups on its surface for the removal of two long (PFOA and PFOS) and two short-chain (PFBA, PFBS) PFAS substances from the aqueous phase. A series of batch adsorption tests have been performed to evaluate the adsorption capacity of the used sorbent. Also, the sorbent was analyzed by SEM, FT-IR, zeta potential, and XRD tests. The results demonstrated that both chitosan beads have good potential for adsorbing short and long-chain PFAS from the aqueous phase.

Keywords: PFAS, chitosan beads, adsorption, grafted chitosan

Procedia PDF Downloads 62
959 Studies and Full Scale Tests for the Development of a Ravine Filling with a Depth of about 12.00m

Authors: Dana Madalina Pohrib, Elena Irina Ciobanu

Abstract:

In compaction works, the most often used codes and standards are those for road embankments and refer to a maximum filling height of 3.00m. When filling a height greater than 3.00m, such codes are no longer valid and thus their application may lead to technical difficulties in the process of compaction and to the achievement of a sufficient degree of compaction. For this reason, in the case of controlled fillings with heights greater than 3.00m it is necessary to formulate and apply a number of special techniques, which can be determined by performing a full scale test. This paper presents the results of the studies and full scale tests conducted for the stabilization of a ravine with vertical banks and a depth of about 12.00m. The fillings will support a heavy traffic road connecting the two parts of a village in Vaslui County, Romania. After analyzing two comparative intervention solutions, the variant of a controlled filling bordered by a monolith concrete retaining wall was chosen. The results obtained by the authors highlighted the need to insert a geogrid reinforcement at every 2.00m for creating a 12.00m thick compacted fill.

Keywords: compaction, dynamic probing, stability, soil stratification

Procedia PDF Downloads 312
958 Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime

Authors: Olusegun Raphael Adeyemi, Samuel Oluwaseun Osunleti, Abiddin Adekunle Bashiruddin

Abstract:

Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria to evaluate the effect of biochar application under different weeding regimes on growth and yield of okra. Treatments were laid out in split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar namely 0t/ha, 10t/ha and 20t/ha while sub-plots treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra, and weed parameters were subjected to analysis of variance and treatment means were separated using least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in 87.3% yield reduction in okra. It is concluded that weed suppression , growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended.

Keywords: biochar, okra, weeding, weed competition

Procedia PDF Downloads 57
957 A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation

Authors: Nuo Xu, Kok Hun Goh, Jeyatharan Kumarasamy

Abstract:

Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper.

Keywords: elastic modulus of pile under soil interaction, jurong formation, kentledge test, pile load test

Procedia PDF Downloads 384
956 Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime

Authors: Olusegun Raphael Adeyemi, Samuel Oluwaseun Osunleti, Abiddin Adekunle Bashiruddin

Abstract:

Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria, to evaluate the effect of biochar application under different weeding regimes on the growth and yield of okra. Treatments were laid out in a split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar, namely 0t/ha, 10t/ha and 20t/ha while sub-plot treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra and weed parameters were subjected to analysis of variance, and treatment means were separated using the least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in an 87.3% yield reduction in okra. It is concluded that weed suppression, growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended.

Keywords: biochar, okra, weeding, weed competition, yield

Procedia PDF Downloads 59
955 Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis

Authors: Adilah Shariff, Radin Hakim, Nurhayati Abdullah

Abstract:

Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.

Keywords: biochar, biomass, rubber wood, slow pyrolysis

Procedia PDF Downloads 317
954 Potential of Two Pelargonium Species for EDTA-Assisted Phytoextraction of Cadmium

Authors: Iram Gul, Maria Manzoor, Muhammad Arshad

Abstract:

The enhanced phytoextraction techniques have been proposed for the remediation of heavy metals contaminated soil. Chelating agents enhance the availability of Cd, which is the main factor in the phytoremediation. This study was conducted to assessed the potential of two Pelargonium species (Pelargonium zonale, Pelargonium hortorum) in EDTA enhanced phytoextraction of Cd using pot experiment. Different doses of EDTA (0, 1, 2, 3, 4, 5 mmol kg-1) was used, and results showed that there was significant increase (approximately 2.1 folds) in the mobility of Cd at EDTA 5 mg kg-1 as compared to control. Both plants have TF and BCF more than 1 and have potential for the phytoextraction of Cd. However, the Pelargonium hortorum showed higher biomass and Cd uptake as compared to Pleragonium zonale. The maximum Cd accumulation in shoot and root of Pelargonium zonale was 484.4 and 264.41 mg kg-1 respectively at 2 mmol kg-1. However, the Pelargonium hortorum accumulate 996.9 and 350 mg kg-1 of Cd in shoot and root respectively at 4 mmol kg-1. Pelargonium hortorum uptake approximately 10.7 folds higher Cd concentration as compared to the Pelargonium zonale. Results revealed that P. hortorum performed better than P. zonal even at higher Cd and EDTA doses however toxicity and leaching potential of increased Cd and EDTA concentrations needs to be explored before field application.

Keywords: Cadmium, EDTA, Pelargonium, phytoextraction

Procedia PDF Downloads 299
953 Microfungi on Sandy Beaches: Potential Threats for People Enjoying Lakeside Recreation

Authors: Tomasz Balabanski, Anna Biedunkiewicz

Abstract:

Research on basic bacteriological and physicochemical parameters conducted by state institutions (Provincial Sanitary and Epidemiological Station and District Sanitary and Epidemiological Station) are limited to bathing waters under constant sanitary and epidemiological supervision. Unfortunately, no routine or monitoring tests are carried out for the presence of microfungi. This also applies to beach sand used for recreational purposes. The purpose of the planned own research was to determine the diversity of the mycobiota present on supervised and unsupervised sandy beaches, on the shores of lakes, of municipal baths used for recreation. The research material consisted of microfungi isolated from April to October 2019 from sandy beaches of supervised and unsupervised lakes located within the administrative boundaries of the city of Olsztyn (North-Eastern Poland, Europe). Four lakes, out of the fifteen available (Tyrsko, Kortowskie, Skanda, and Ukiel), whose bathing waters are subjected to routine bacteriological tests, were selected for testing. To compare the diversity of the mycobiota composition on the surface and below the sand mixing layer, samples were taken from two depths (10 cm and 50 cm), using a soil auger. Micro-fungi from sand samples were obtained by surface inoculation on an RBC medium from the 1st dilution (1:10). After incubation at 25°C for 96-144 h, the average number of CFU/dm³ was counted. Morphologically differing yeast colonies were passaged into Sabouraud agar slants with gentamicin and incubated again. For detailed laboratory analyses, culture methods (macro- and micro-cultures) and identification methods recommended in diagnostic mycological laboratories were used. The conducted research allowed obtaining 140 yeast isolates. The total average population ranged from 1.37 × 10⁻² CFU/dm³ before the bathing season (April 2019), 1.64 × 10⁻³ CFU/dm³ in the season (May-September 2019), and 1.60 × 10⁻² CFU/dm³ after the end of the season (October 2019). More microfungi were obtained from the surface layer of sand (100 isolates) than from the deeper layer (40 isolates). Reported microfungi may circulate seasonally between individual elements of the lake ecosystem. From the sand/soil from the catchment area beaches, they can get into bathing waters, stopping periodically on the coastal phyllosphere. The sand of the beaches and the phyllosphere are a kind of filter for the water reservoir. The presence of microfungi with various pathogenicity potential in these places is of major epidemiological importance. Therefore, full monitoring of not only recreational waters but also sandy beaches should be treated as an element of constant control by appropriate supervisory institutions, allowing recreational areas for public use so that the use of these places does not involve the risk of infection. Acknowledgment: 'Development Program of the University of Warmia and Mazury in Olsztyn', POWR.03.05.00-00-Z310/17, co-financed by the European Union under the European Social Fund from the Operational Program Knowledge Education Development. Tomasz Bałabański is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Biology and Biotechnology (POWR.03.05.00-00-Z310/17), which is funded by the 'European Social Fund'.

Keywords: beach, microfungi, sand, yeasts

Procedia PDF Downloads 102
952 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm

Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding

Abstract:

Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.

Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection

Procedia PDF Downloads 151
951 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 159
950 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation

Authors: Meysam Abedinpour

Abstract:

Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.

Keywords: deficit irrigation, water use efficiency, yield, soybean

Procedia PDF Downloads 466
949 Modification of Unsaturated Fatty Acids Derived from Tall Oil Using Micro/Mesoporous Materials Based on H-ZSM-22 Zeolite

Authors: Xinyu Wei, Mingming Peng, Kenji Kamiya, Eika Qian

Abstract:

Iso-stearic acid as a saturated fatty acid with a branched chain shows a low pour point, high oxidative stability and great biodegradability. The industrial production of iso-stearic acid involves first isomerizing unsaturated fatty acids into branched-chain unsaturated fatty acids (BUFAs), followed by hydrogenating the branched-chain unsaturated fatty acids to obtain iso-stearic acid. However, the production yield of iso-stearic acid is reportedly less than 30%. In recent decades, extensive research has been conducted on branched fatty acids. Most research has replaced acidic clays with zeolites due to their high selectivity, good thermal stability, and renewability. It was reported that isomerization of unsaturated fatty acid occurred mainly inside the zeolite channel. In contrast, the production of by-products like dimer acid mainly occurs at acid sites outside the surface of zeolite. Further, the deactivation of catalysts is attributed to the pore blockage of zeolite. In the present study, micro/mesoporous ZSM-22 zeolites were developed. It is clear that the synthesis of a micro/mesoporous ZSM-22 zeolite is regarded as the ideal strategy owing to its ability to minimize coke formation. Different mesoporosities micro/mesoporous H-ZSM-22 zeolites were prepared through recrystallization of ZSM-22 using sodium hydroxide solution (0.2-1M) with cetyltrimethylammonium bromide template (CTAB). The structure, morphology, porosity, acidity, and isomerization performance of the prepared catalysts were characterized and evaluated. The dissolution and recrystallization process of the H-ZSM-22 microporous zeolite led to the formation of approximately 4 nm-sized mesoporous channels on the outer surface of the microporous zeolite, resulting in a micro/mesoporous material. This process increased the weak Brønsted acid sites at the pore mouth while reducing the total number of acid sites in ZSM-22. Finally, an activity test was conducted using oleic acid as a model compound in a fixed-bed reactor. The activity test results revealed that micro/mesoporous H-ZSM-22 zeolites exhibited a high isomerization activity, reaching >70% selectivity and >50% yield of BUFAs. Furthermore, the yield of oligomers was limited to less than 20%. This demonstrates that the presence of mesopores in ZSM-22 enhances contact between the feedstock and the active sites within the catalyst, thereby increasing catalyst activity. Additionally, a portion of the dissolved and recrystallized silica adhered to the catalyst's surface, covering the surface-active sites, which reduced the formation of oligomers. This study offers distinct insights into the production of iso-stearic acid using a fixed-bed reactor, paving the way for future research in this area.

Keywords: Iso-stearic acid, oleic acid, skeletal isomerization, micro/mesoporous, ZSM-22

Procedia PDF Downloads 21
948 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 301
947 Effects of Urbanization on Land Use/Land Cover and Stream Flow of a Sub-Tropical River Basin of India

Authors: Satyavati Shukla, Lakhan V. Rathod, Mohan V. Khire

Abstract:

Rapid urbanization changes the land use/land cover pattern of a developing region. Due to these land surface changes, stream flow of the rivers also changes. It is important to investigate the factors affecting hydrological characteristics of the river basin for better river basin management planning. This study is aimed to understand the effect of Land Use/Land Cover (LU/LC) changes on stream flow of Upper Bhima River basin which is highly stressed in terms of water resources. In this study, Upper Bhima River basin is divided into two adjacent sub-watersheds: Mula-Mutha (urbanized) sub-watershed and Bhima (non-urbanized) sub-watershed. First of all, LU/LC changes were estimated over 1980, 2002, and 2009 for both Mula-Mutha and Bhima sub-watersheds. Further, stream flow simulations were done using Soil and Water Assessment Tool (SWAT) for the streams draining both watersheds. Results revealed that stream flow was relatively higher for urbanized sub-watershed. Through Sensitivity Analysis it was observed that out of all the parameters used, base flow was the most sensitive parameter towards LU/LC changes.

Keywords: land use/land cover, remote sensing, stream flow, urbanization

Procedia PDF Downloads 319
946 Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth

Authors: Meiyan Xing, Cenran Li, Liang Xiang

Abstract:

Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease.

Keywords: cow dung vermicompost, seed germination, seedling growth, sludge utilization

Procedia PDF Downloads 262
945 Evaluation of Site Laboratory Conditions Effect on Seismic Design Characteristics in Ramhormoz

Authors: Sayyed Yaghoub Zolfegharifar, Khairul Anuar Kassim, Hossein Khoramrooz, Khodayar Farhadiasl, Sadegh Jahan

Abstract:

Iran is one of the world's seismically active countries so that it experiences many small to medium earthquakes annually and a large earthquake every ten years. Due to seism tectonic conditions and special geographical and climatic position, Iran has the potential to create numerous severe earthquakes. Therefore, seismicity studies and seismic zonation of seismic zones of the country are necessary. In this article, the effect of local site conditions on the characteristics of seismic design in Rahmormoz will be examined. After analyzing the seismic hazard for Rahmormoz through deterministic and statistical methods and preparing the necessary geotechnical models based on available data, the ground response will be analyzed for different parts of the city based on four inputs and acceleration level estimated for bedrock through the equivalent linear method and by means of Deep Soil program. Finally, through the analysis of the obtained results, the seismic profiles of the ground surface for different parts of the city will be presented.

Keywords: seismic microzonation, ground response, resonance spectrum, period, site conditions

Procedia PDF Downloads 342
944 Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model

Authors: Ameen Alawneh

Abstract:

The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming.

Keywords: Supply chain, Mixed Integer linear programming, heavy industry, water pollution

Procedia PDF Downloads 445