Search results for: orthogonalization algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3608

Search results for: orthogonalization algorithm

1268 Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education

Authors: Mohammed A. M. Ibrahim

Abstract:

This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.

Keywords: networking wire and wireless technology, wireless network security, distributed computing, algorithm, encryption and decryption

Procedia PDF Downloads 341
1267 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 212
1266 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 95
1265 Optimization of a Cone Loudspeaker Parameter of Design Parameters by Analysis of a Narrow Acoustic Sound Pathway

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study tried optimization of design parameter of a cone loudspeaker unit as an example of the high flexibility of the products design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to each design the parameter of the loudspeaker. To overcome the limitation of the design problem in practice, this paper proposes a new an acoustic analysis algorithm to optimize design the parameter of the loudspeaker. The material character of cone paper and the loudspeaker edge was the design parameter, and the vibration displacement of the cone paper was the objective function. The results of the analysis were compared with the predicted value. They had high accuracy to the predicted value. These results suggest that, though the parameter design is difficult by experience and intuition, it can be performed comparatively easily using the optimization design by the developed acoustic analysis software.

Keywords: air viscosity, loudspeaker, cone paper, edge, optimization

Procedia PDF Downloads 405
1264 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: classification, data mining, decision tree, scholarship

Procedia PDF Downloads 382
1263 CFD Modeling and Optimization of Gas Cyclone Separator for Performance Improvement

Authors: N. Beit Saeid

Abstract:

Cyclones are used in the field of air industrial gases pollution and control the pollution with centrifugal forces that is generated with spatial geometry of the cyclone. Their simple design, low capital and maintenance costs and adaptability to a wide range of operating conditions have made cyclones one of the most widely used industrial dust collectors. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Optimized geometry of outlet diffuser of the cyclones potentially could reduce exit pressure losses without affecting collection efficiency. Three rectangular outlets and a radial outlet with a variable opening had been analyzed on two cyclones. Pressure drop was investigated for inlet velocities from about 10 to 20 m s−1. The radial outlet reduced cyclone pressure drop by between 8.7 and 11.9 percent when its exit area was equal to the flow area of the cyclone vortex finder or gas exit. A simple payback based on avoided energy costs was estimated to be between 3600 and 5000 h, not including installation cost.

Keywords: cyclone, CFD, optimization, genetic algorithm

Procedia PDF Downloads 385
1262 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 175
1261 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 541
1260 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System

Authors: E. E. EL-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou M. El-refay, Mohammed El-Zefery

Abstract:

Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of three-phase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.

Keywords: photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT)

Procedia PDF Downloads 487
1259 A Chinese Nested Named Entity Recognition Model Based on Lexical Features

Authors: Shuo Liu, Dan Liu

Abstract:

In the field of named entity recognition, most of the research has been conducted around simple entities. However, for nested named entities, which still contain entities within entities, it has been difficult to identify them accurately due to their boundary ambiguity. In this paper, a hierarchical recognition model is constructed based on the grammatical structure and semantic features of Chinese text for boundary calculation based on lexical features. The analysis is carried out at different levels in terms of granularity, semantics, and lexicality, respectively, avoiding repetitive work to reduce computational effort and using the semantic features of words to calculate the boundaries of entities to improve the accuracy of the recognition work. The results of the experiments carried out on web-based microblogging data show that the model achieves an accuracy of 86.33% and an F1 value of 89.27% in recognizing nested named entities, making up for the shortcomings of some previous recognition models and improving the efficiency of recognition of nested named entities.

Keywords: coarse-grained, nested named entity, Chinese natural language processing, word embedding, T-SNE dimensionality reduction algorithm

Procedia PDF Downloads 133
1258 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 40
1257 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 438
1256 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 488
1255 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 65
1254 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi

Abstract:

In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation

Procedia PDF Downloads 305
1253 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 379
1252 Constraint-Directed Techniques for Transport Scheduling with Capacity Restrictions of Automotive Manufacturing Components

Authors: Martha Ndeley, John Ikome

Abstract:

In this paper, we expand the scope of constraint-directed techniques to deal with the case of transportation schedule with capacity restrictions where the scheduling problem includes alternative activities. That is, not only does the scheduling problem consist of determining when an activity is to be executed, but also determining which set of alternative activities is to be executed at all level of transportation from input to output. Such problems encompass both alternative resource problems and alternative process plan problems. We formulate a constraint-based representation of alternative activities to model problems containing such choices. We then extend existing constraint-directed scheduling heuristic commitment techniques and propagators to reason directly about the fact that an activity does not necessarily have to exist in a final transportation schedule without being completed. Tentative results show that an algorithm using a novel texture-based heuristic commitment technique propagators achieves the best overall performance of the techniques tested.

Keywords: production, transportation, scheduling, integrated

Procedia PDF Downloads 363
1251 Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal

Authors: Muhammad Umair, Syed Qasim Gilani

Abstract:

A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme.

Keywords: blind equalization, blind signal separation, equalization, independent component analysis, transmission impairments, QAM receiver

Procedia PDF Downloads 215
1250 Parkinson’s Disease Hand-Eye Coordination and Dexterity Evaluation System

Authors: Wann-Yun Shieh, Chin-Man Wang, Ya-Cheng Shieh

Abstract:

This study aims to develop an objective scoring system to evaluate hand-eye coordination and hand dexterity for Parkinson’s disease. This system contains three boards, and each of them is implemented with the sensors to sense a user’s finger operations. The operations include the peg test, the block test, and the blind block test. A user has to use the vision, hearing, and tactile abilities to finish these operations, and the board will record the results automatically. These results can help the physicians to evaluate a user’s reaction, coordination, dexterity function. The results will be collected to a cloud database for further analysis and statistics. A researcher can use this system to obtain systematic, graphic reports for an individual or a group of users. Particularly, a deep learning model is developed to learn the features of the data from different users. This model will help the physicians to assess the Parkinson’s disease symptoms by a more intellective algorithm.

Keywords: deep learning, hand-eye coordination, reaction, hand dexterity

Procedia PDF Downloads 70
1249 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 118
1248 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 223
1247 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 94
1246 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 269
1245 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing

Authors: S. Vignesh, K. S. Rangasamy

Abstract:

The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.

Keywords: CCD, optics, image processing, D3CIP

Procedia PDF Downloads 360
1244 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine

Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi

Abstract:

Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.

Keywords: non linear controller, robust, sliding mode, kinetic energy

Procedia PDF Downloads 505
1243 VTOL-Fw Mode-Transitioning UAV Design and Analysis

Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu

Abstract:

In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.

Keywords: aircraft design, linear analysis, mode transitioning control, UAV

Procedia PDF Downloads 399
1242 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging

Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig

Abstract:

A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.

Keywords: clogging, continuous casting, inclusion, simulation, submerged entry nozzle

Procedia PDF Downloads 287
1241 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique

Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat

Abstract:

The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.

Keywords: AI, bottle, die shaping, FEM

Procedia PDF Downloads 240
1240 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 375
1239 Research on Spatial Allocation Optimization of Urban Elderly Care Facilities Based on ArcGIS Technology

Authors: Qiao Qiao

Abstract:

With the development of The Times, the elderly demand for pension service facilities is increasing. Taking 26 street towns in Jiangjin District of Chongqing as examples, ArcGIS spatial analysis method was used to analyze the distribution status of the elderly population, the core density of the elderly population, and the spatial layout characteristics of institutional elderly care facilities in Jiangjin District of Chongqing. The results showed that there were differences in the structure and aging degree of the elderly population in each street town. There is a certain imbalance between the spatial distribution of the elderly population and the planning and construction of elderly care facilities. The accessibility of elderly care facilities is uneven. Therefore, a genetic algorithm is used to optimize the spatial layout of institutional elderly care facilities, improve the accessibility of facilities, strengthen the participation of multiple subjects, and provide a reference for the future construction planning of elderly care facilities.

Keywords: institutional pension facilities, spatial layout, accessibility, ArcGIS

Procedia PDF Downloads 19