Search results for: motor intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2491

Search results for: motor intelligence

151 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 180
150 Evolution of Web Development Progress in Modern Information Technology

Authors: Abdul Basit Kiani

Abstract:

Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design

Procedia PDF Downloads 54
149 Spatial Transformation of Heritage Area as The Impact of Tourism Activity (Case Study: Kauman Village, Surakarta City, Central Java, Indonesia

Authors: Nafiah Solikhah Thoha

Abstract:

One area that has spatial character as Heritage area is Kauman Villages. Kauman village in The City of Surakarta, Central Java, Indonesia was formed in 1757 by Paku Buwono III as the King of Kasunanan kingdom (Mataram Kingdom) for Kasunanan kingdom courtiers and scholars of Madrasa. Spatial character of Kauman village influenced by Islamic planning and socio-cultural rules of Kasunanan Kingdom. As traditional settlements influenced by Islamic planning, the Grand Mosque is a binding part of the whole area. Circulation pattern forming network (labyrinth) with narrow streets that ended at the Grand Mosque. The outdoor space can be used for circulation. Social activity is dominated by step movement from one place to a different place. Stalemate (the fina/cul de sac) generally only passable on foot, bicycles, and motorcycles. While the pass (main and branch) can be traversed by motor, vehicles. Kauman village has an area that can not be used as a public road that penetrates and serves as a liaison between the outside world to the other. Hierarchy of hall in Kauman village shows that the existence of a space is getting into more important. Firstly, woman in Kauman make the handmade batik for themself. In 2005 many people improving batik tradisional into commercial, and developed program named "Batik Tourism village of Kauman". That program affects the spatial transformations. This study aimed to explore the influence of tourism program towards spatial transformations. The factors that studied are the organization of space, circulation patterns, hierarchical space, and orientation through the descriptive-evaluation approach methods. Based on the study, tourism activity engenders transformations on the spatial scale (macro), residential block (mezo), homes (micro). First, the Grand Mosque and madrasa (religious school) as a binding zoning; tangle of roads as forming the structure of the area developed as a liaison with outside Kauman; organization of space in the residential of batik entrepreneurs firstly just a residential, then develop into residential, factory of batik including showroom. Second, the circulation pattern forming network (labyrinth) and ends at the Grand Mosque. Third, the hierarchy in the form of public space (the shari), semi-public, and private (the fina/culdesac) is no longer to provide protection to women, only as hierarchy of circulation path. Fourth, cluster building orientation does not follow the kiblat direction or axis oriented to cosmos, but influence by the new function as the showroom. It was need the direction of the main road. Kauman grow as an appropriate area for the community. During its development, the settlement function changes according to community activities, especially economic activities. The new function areas as tourism area affect spatial pattern of Kauman village. Spatial existence and activity as a local wisdom that has been done for generations have meaning of holistic, encompassing socio-cultural sustainability, economics, and the heritage area. By reviewing the local wisdom and the way of life of that society, we can learn how to apply the culture as education for sustainable of heritage area.

Keywords: impact of tourism, Kauman village, spatial transformation, sustainable of heritage area

Procedia PDF Downloads 430
148 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 14
147 Developing a Model to Objectively Assess the Culture of Individuals and Teams in Order to Effectively and Efficiently Achieve Sustainability in the Manpower

Authors: Ahmed Mohamed Elnady Mohamed Elsafty

Abstract:

This paper explains a developed applied objective model to measure the culture qualitatively and quantitatively, whether in individuals or in teams, in order to be able to use culture correctly or modify it efficiently. This model provides precise measurements and consistent interpretations by being comprehensive, updateable, and protected from being misled by imitations. Methodically, the provided model divides the culture into seven dimensions (total 43 cultural factors): First dimension is outcome-orientation which consists of five factors and should be highest in leaders. Second dimension is details-orientation which consists of eight factors and should be in highest intelligence members. Third dimension is team-orientation which consists of five factors and should be highest in instructors or coaches. Fourth dimension is change-orientation which consists of five factors and should be highest in soldiers. Fifth dimension is people-orientation which consists of eight factors and should be highest in media members. Sixth dimension is masculinity which consists of seven factors and should be highest in hard workers. Last dimension is stability which consists of seven factors and should be highest in soft workers. In this paper, the details of all cultural factors are explained. Practically, information collection about each cultural factor in the targeted person or team is essential in order to calculate the degrees of all cultural factors using the suggested equation of multiplying 'the score of factor presence' by 'the score of factor strength'. In this paper, the details of how to build each score are explained. Based on the highest degrees - to identify which cultural dimension is the prominent - choosing the tested individual or team in the supposedly right position at the right time will provide a chance to use minimal efforts to make everyone aligned to the organization’s objectives. In other words, making everyone self-motivated by setting him/her at the right source of motivation is the most effective and efficient method to achieve high levels of competency, commitment, and sustainability. Modifying a team culture can be achieved by excluding or including new members with relatively high or low degrees in specific cultural factors. For conclusion, culture is considered as the software of the human beings and it is one of the major compression factors on the managerial discretion. It represents the behaviors, attitudes, and motivations of the human resources which are vital to enhance quality and safety, expanding the market share, and defending against attacks from external environments. Thus, it is tremendously essential and useful to use such a comprehensive model to measure, use, and modify culture.

Keywords: culture dimensions, culture factors, culture measurement, cultural analysis, cultural modification, self-motivation, alignment to objectives, competency, sustainability

Procedia PDF Downloads 164
146 In-Depth Investigations on the Sequences of Accidents of Powered Two Wheelers Based on Police Crash Reports of Medan, North Sumatera Province Indonesia, Using Decision Aiding Processes

Authors: Bangun F., Crevits B., Bellet T., Banet A., Boy G. A., Katili I.

Abstract:

This paper seeks the incoherencies in cognitive process during an accident of Powered Two Wheelers (PTW) by understanding the factual sequences of events and causal relations for each case of accident. The principle of this approach is undertaking in-depth investigations on case per case of PTW accidents based on elaborate data acquisitions on accident sites that officially stamped in Police Crash Report (PCRs) 2012 of Medan with criteria, involved at least one PTW and resulted in serious injury and fatalities. The analysis takes into account four modules: accident chronologies, perpetrator, and victims, injury surveillance, vehicles and road infrastructures, comprising of traffic facilities, road geometry, road alignments and weather. The proposal for improvement could have provided a favorable influence on the chain of functional processes and events leading to collision. Decision Aiding Processes (DAP) assists in structuring different entities at different decisional levels, as each of these entities has its own objectives and constraints. The entities (A) are classified into 6 groups of accidents: solo PTW accidents; PTW vs. PTW; PTW vs. pedestrian; PTW vs. motor-trishaw; and PTW vs. other vehicles and consecutive crashes. The entities are also distinguished into 4 decisional levels: level of road users and street systems; operational level (crash-attended police officers or CAPO and road engineers), tactical level (Regional Traffic Police, Department of Transportation, and Department of Public Work), and strategic level (Traffic Police Headquarters (TCPHI)), parliament, Ministry of Transportation and Ministry of Public Work). These classifications will lead to conceptualization of Problem Situations (P) and Problem Formulations (I) in DAP context. The DAP concerns the sequences process of the incidents until the time the accident occurs, which can be modelled in terms of five activities of procedural rationality: identification on initial human features (IHF), investigation on proponents attributes (PrAT), on Injury Surveillance (IS), on the interaction between IHF and PrAt and IS (intercorrelation), then unravel the sequences of incidents; filtering and disclosure, which include: what needs to activate, modify or change or remove, what is new and what is priority. These can relate to the activation or modification or new establishment of law. The PrAt encompasses the problems of environmental, road infrastructure, road and traffic facilities, and road geometry. The evaluation model (MP) is generated to bridge P and I since MP is produced by the intercorrelations among IHF, PrAT and IS extracted from the PCRs 2012 of Medan. There are 7 findings of incoherences: lack of knowledge and awareness on the traffic regulations and the risks of accidents, especially when riding between 0 < x < 10 km from house, riding between 22 p.m.–05.30 a.m.; lack of engagements on procurement of IHF Data by CAPO; lack of competency of CAPO on data procurement in accident-sites; no intercorrelation among IHF and PrAt and IS in the database systems of PCRs; lack of maintenance and supervision on the availabilities and the capacities of traffic facilities and road infrastructure; instrumental bias with wash-back impacts towards the TCPHI; technical robustness with wash-back impacts towards the CAPO and TCPHI.

Keywords: decision aiding processes, evaluation model, PTW accidents, police crash reports

Procedia PDF Downloads 158
145 Using Chatbots to Create Situational Content for Coursework

Authors: B. Bricklin Zeff

Abstract:

This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.

Keywords: chatbot, nursing, pragmatics, role-play, AI

Procedia PDF Downloads 65
144 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 189
143 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance

Authors: Eva Laryea, Clement Yeboah Authors

Abstract:

A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.

Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety

Procedia PDF Downloads 58
142 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 187
141 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics

Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee

Abstract:

Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.

Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru

Procedia PDF Downloads 87
140 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 82
139 Investigations of Effective Marketing Metric Strategies: The Case of St. George Brewery Factory, Ethiopia

Authors: Mekdes Getu Chekol, Biniam Tedros Kahsay, Rahwa Berihu Haile

Abstract:

The main objective of this study is to investigate the marketing strategy practice in the Case of St. George Brewery Factory in Addis Ababa. One of the core activities in a Business Company to stay in business is having a well-developed marketing strategy. It assessed how the marketing strategies were practiced in the company to achieve its goals aligned with segmentation, target market, positioning, and the marketing mix elements to satisfy customer requirements. Using primary and secondary data, the study is conducted by using both qualitative and quantitative approaches. The primary data was collected through open and closed-ended questionnaires. Considering the size of the population is small, the selection of the respondents was carried out by using a census. The finding shows that the company used all the 4 Ps of the marketing mix elements in its marketing strategies and provided quality products at affordable prices by promoting its products by using high and effective advertising mechanisms. The product availability and accessibility are admirable with the practices of both direct and indirect distribution channels. On the other hand, the company has identified its target customers, and the company’s market segmentation practice is geographical location. Communication effectiveness between the marketing department and other departments is very good. The adjusted R2 model explains 61.6% of the marketing strategy practice variance by product, price, promotion, and place. The remaining 38.4% of variation in the dependent variable was explained by other factors not included in this study. The result reveals that all four independent variables, product, price, promotion, and place, have a positive beta sign, proving that predictor variables have a positive effect on that of the predicting dependent variable marketing strategy practice. Even though the marketing strategies of the company are effectively practiced, there are some problems that the company faces while implementing them. These are infrastructure problems, economic problems, intensive competition in the market, shortage of raw materials, seasonality of consumption, socio-cultural problems, and the time and cost of awareness creation for the customers. Finally, the authors suggest that the company better develop a long-range view and try to implement a more structured approach to attain information about potential customers, competitor’s actions, and market intelligence within the industry. In addition, we recommend conducting the study by increasing the sample size and including different marketing factors.

Keywords: marketing strategy, market segmentation, target marketing, market positioning, marketing mix

Procedia PDF Downloads 61
138 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 92
137 Technology Road Mapping in the Fourth Industrial Revolution: A Comprehensive Analysis and Strategic Framework

Authors: Abdul Rahman Hamdan

Abstract:

The Fourth Industrial Revolution (4IR) has brought unprecedented technological advancements that have disrupted many industries worldwide. In keeping up with the technological advances and rapid disruption by the introduction of many technological advancements brought forth by the 4IR, the use of technology road mapping has emerged as one of the critical tools for organizations to leverage. Technology road mapping can be used by many companies to guide them to become more adaptable and anticipate future transformation and innovation, and avoid being redundant or irrelevant due to the rapid changes in technological advancement. This research paper provides a comprehensive analysis of technology road mapping within the context of the 4IR. The objectives of the paper are to provide companies with practical insights and a strategic framework of technology road mapping for them to navigate the fast-changing nature of the 4IR. This study also contributes to the understanding and practice of technology road mapping in the 4IR and, at the same time, provides organizations with the necessary tools and critical insight to navigate the 4IR transformation by leveraging technology road mapping. Based on the literature review and case studies, the study analyses key principles, methodologies, and best practices in technology road mapping and integrates them with the unique characteristics and challenges of the 4IR. The research paper gives the background of the fourth industrial revolution. It explores the disruptive potential of technologies in the 4IR and the critical need for technology road mapping that consists of strategic planning and foresight to remain competitive and relevant in the 4IR era. It also highlights the importance of technology road mapping as an organisation’s proactive approach to align the organisation’s objectives and resources to their technology and product development in meeting the fast-evolving technological 4IR landscape. The paper also includes the theoretical foundations of technology road mapping and examines various methodological approaches, and identifies external stakeholders in the process, such as external experts, stakeholders, collaborative platforms, and cross-functional teams to ensure an integrated and robust technological roadmap for the organisation. Moreover, this study presents a comprehensive framework for technology road mapping in the 4IR by incorporating key elements and processes such as technology assessment, competitive intelligence, risk analysis, and resource allocation. It provides a framework for implementing technology road mapping from strategic planning, goal setting, and technology scanning to road mapping visualisation, implementation planning, monitoring, and evaluation. In addition, the study also addresses the challenges and limitations related to technology roadmapping in 4IR, including the gap analysis. In conclusion of the study, the study will propose a set of practical recommendations for organizations that intend to leverage technology road mapping as a strategic tool in the 4IR in driving innovation and becoming competitive in the current and future ecosystem.

Keywords: technology management, technology road mapping, technology transfer, technology planning

Procedia PDF Downloads 69
136 The Roman Fora in North Africa Towards a Supportive Protocol to the Decision for the Morphological Restitution

Authors: Dhouha Laribi Galalou, Najla Allani Bouhoula, Atef Hammouda

Abstract:

This research delves into the fundamental question of the morphological restitution of built archaeology in order to place it in its paradigmatic context and to seek answers to it. Indeed, the understanding of the object of the study, its analysis, and the methodology of solving the morphological problem posed, are manageable aspects only by means of a thoughtful strategy that draws on well-defined epistemological scaffolding. In this stream, the crisis of natural reasoning in archaeology has generated multiple changes in this field, ranging from the use of new tools to the integration of an archaeological information system where urbanization involves the interplay of several disciplines. The built archaeological topic is also an architectural and morphological object. It is also a set of articulated elementary data, the understanding of which is about to be approached from a logicist point of view. Morphological restitution is no exception to the rule, and the inter-exchange between the different disciplines uses the capacity of each to frame the reflection on the incomplete elements of a given architecture or on its different phases and multiple states of existence. The logicist sequence is furnished by the set of scattered or destroyed elements found, but also by what can be called a rule base which contains the set of rules for the architectural construction of the object. The knowledge base built from the archaeological literature also provides a reference that enters into the game of searching for forms and articulations. The choice of the Roman Forum in North Africa is justified by the great urban and architectural characteristics of this entity. The research on the forum involves both a fairly large knowledge base but also provides the researcher with material to study - from a morphological and architectural point of view - starting from the scale of the city down to the architectural detail. The experimentation of the knowledge deduced on the paradigmatic level, as well as the deduction of an analysis model, is then carried out on the basis of a well-defined context which contextualises the experimentation from the elaboration of the morphological information container attached to the rule base and the knowledge base. The use of logicist analysis and artificial intelligence has allowed us to first question the aspects already known in order to measure the credibility of our system, which remains above all a decision support tool for the morphological restitution of Roman Fora in North Africa. This paper presents a first experimentation of the model elaborated during this research, a model framed by a paradigmatic discussion and thus trying to position the research in relation to the existing paradigmatic and experimental knowledge on the issue.

Keywords: classical reasoning, logicist reasoning, archaeology, architecture, roman forum, morphology, calculation

Procedia PDF Downloads 147
135 Critical Analysis of International Protections for Children from Sexual Abuse and Examination of Indian Legal Approach

Authors: Ankita Singh

Abstract:

Sex trafficking and child pornography are those kinds of borderless crimes which can not be effectively prevented only through the laws and efforts of one country because it requires a proper and smooth collaboration among countries. Eradication of international human trafficking syndicates, criminalisation of international cyber offenders, and effective ban on child pornography is not possible without applying effective universal laws; hence, continuous collaboration of all countries is much needed to adopt and routinely update these universal laws. Congregation of countries on an international platform is very necessary from time to time, where they can simultaneously adopt international agendas and create powerful universal laws to prevent sex trafficking and child pornography in this modern digital era. In the past, some international steps have been taken through The Convention on the Rights of the Child (CRC) and through The Optional Protocol to the Convention on the Rights of the Child on the Sale of Children, Child Prostitution, and Child Pornography, but in reality, these measures are quite weak and are not capable in effectively protecting children from sexual abuse in this modern & highly advanced digital era. The uncontrolled growth of artificial intelligence (AI) and its misuse, lack of proper legal jurisdiction over foreign child abusers and difficulties in their extradition, improper control over international trade of digital child pornographic content, etc., are some prominent issues which can only be controlled through some new, effective and powerful universal laws. Due to a lack of effective international standards and a lack of improper collaboration among countries, Indian laws are also not capable of taking effective actions against child abusers. This research will be conducted through both doctrinal as well as empirical methods. Various literary sources will be examined, and a questionnaire survey will be conducted to analyse the effectiveness of international standards and Indian laws against child pornography. Participants in this survey will be Indian University students. In this work, the existing international norms made for protecting children from sexual abuse will be critically analysed. It will explore why effective and strong collaboration between countries is required in modern times. It will be analysed whether existing international steps are enough to protect children from getting trafficked or being subjected to pornography, and if these steps are not found to be sufficient enough, then suggestions will be given on how international standards and protections can be made more effective and powerful in this digital era. The approach of India towards the existing international standards, the Indian laws to protect children from being subjected to pornography, and the contributions & capabilities of India in strengthening the international standards will also be analysed.

Keywords: child pornography, prevention of children from sexual offences act, the optional protocol to the convention on the rights of the child on the sale of children, child prostitution and child pornography, the convention on the rights of the child

Procedia PDF Downloads 40
134 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 108
133 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 100
132 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care

Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris

Abstract:

Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventions

Keywords: carbon footprint, environmental impact, primary care, sustainable healthcare

Procedia PDF Downloads 62
131 Counter-Terrorism and De-Radicalization as Soft Strategies in Combating Terrorism in Indonesia: A Critical Review

Authors: Tjipta Lesmana

Abstract:

Terrorist attacks quickly penetrated Indonesia following the downfall of Soeharto regime in May 1998. Reform era was officially proclaimed. Indonesia turned to 'heaven state' from 'authoritarian state'. For the first time since 1966, the country experienced a full-scale freedom of expression, including freedom of the press, and heavy acknowledgement of human rights practice. Some religious extremists previously run away to neighbor countries to escape from security apparatus secretly backed home. Quickly they consolidated the power to continue their long aspiration and dream to establish 'Shariah Indonesia', Indonesia based on Khilafah ideology. Bali bombings I which shocked world community occurred on 12 October 2002 in the famous tourist district of Kuta on the Indonesian island of Bali, killing 202 people (including 88 Australians, 38 Indonesians, and people from more than 20 other nationalities). In the capital, Jakarta, successive bombings were blasted in Marriott hotel, Australian Embassy, residence of the Philippine Ambassador and stock exchange office. A 'drunken Indonesia' is far from ready to combat nationwide sudden and massive terrorist attacks. Police Detachment 88 (Densus 88) Indonesian counter-terrorism squad, was quickly formed following 2002 Bali Bombing. Anti-terrorism Provisional Act was immediately erected, as well, due to urgent need to fight terrorism. Some Bali bombings criminals were deadly executed after sentenced by the court. But a series of terrorist suicide attacks and another Bali bombings (the second one) in Bali, again, shocked world community. Terrorism network is undoubtedly spreading nationwide. Suspicion is high that they had close connection with Al Qaeda’s groups. Even 'Afghanistan alumni' and 'Syria alumni' returned to Indonesia to back up the local mujahidins in their fights to topple Indonesia constitutional government and set up Islamic state (Khilafah). Supported by massive aids from friendly nations, especially Australia and United States, Indonesia launched large scale operations to crush terrorism consisted of various radical groups such as JAD, JAS, and JAADI. Huge energy, money, and souls were dedicated. Terrorism is, however, persistently entrenched. High ranking officials from Detachment 88 squad and military intelligence believe that terrorism is still one the most deadly enemy of Indonesia.

Keywords: counter-radicalization, de-radicalization, Khalifah, Union State, Al Qaedah, ISIS

Procedia PDF Downloads 178
130 Chatbots and the Future of Globalization: Implications of Businesses and Consumers

Authors: Shoury Gupta

Abstract:

Chatbots are a rapidly growing technological trend that has revolutionized the way businesses interact with their customers. With the advancements in artificial intelligence, chatbots can now mimic human-like conversations and provide instant and efficient responses to customer inquiries. In this research paper, we aim to explore the implications of chatbots on the future of globalization for both businesses and consumers. The paper begins by providing an overview of the current state of chatbots in the global market and their growth potential in the future. The focus is on how chatbots have become a valuable tool for businesses looking to expand their global reach, especially in areas with high population density and language barriers. With chatbots, businesses can engage with customers in different languages and provide 24/7 customer service support, creating a more accessible and convenient customer experience. The paper then examines the impact of chatbots on cross-cultural communication and how they can help bridge communication gaps between businesses and consumers from different cultural backgrounds. Chatbots can potentially facilitate cross-cultural communication by offering real-time translations, voice recognition, and other innovative features that can help users communicate effectively across different languages and cultures. By providing more accessible and inclusive communication channels, chatbots can help businesses reach new markets and expand their customer base, making them more competitive in the global market. However, the paper also acknowledges that there are potential drawbacks associated with chatbots. For instance, chatbots may not be able to address complex customer inquiries that require human input. Additionally, chatbots may perpetuate biases if they are programmed with certain stereotypes or assumptions about different cultures. These drawbacks may have significant implications for businesses and consumers alike. To explore the implications of chatbots on the future of globalization in greater detail, the paper provides a thorough review of existing literature and case studies. The review covers topics such as the benefits of chatbots for businesses and consumers, the potential drawbacks of chatbots, and how businesses can mitigate any risks associated with chatbot use. The paper also discusses the ethical considerations associated with chatbot use, such as privacy concerns and the need to ensure that chatbots do not discriminate against certain groups of people. The ethical implications of chatbots are particularly important given the potential for chatbots to be used in sensitive areas such as healthcare and financial services. Overall, this research paper provides a comprehensive analysis of chatbots and their implications for the future of globalization. By exploring both the potential benefits and drawbacks of chatbot use, the paper aims to provide insights into how businesses and consumers can leverage this technology to achieve greater global reach and improve cross-cultural communication. Ultimately, the paper concludes that chatbots have the potential to be a powerful tool for businesses looking to expand their global footprint and improve their customer experience, but that care must be taken to mitigate any risks associated with their use.

Keywords: chatbots, conversational AI, globalization, businesses

Procedia PDF Downloads 97
129 Human Interaction Skills and Employability in Courses with Internships: Report of a Decade of Success in Information Technology

Authors: Filomena Lopes, Miguel Magalhaes, Carla Santos Pereira, Natercia Durao, Cristina Costa-Lobo

Abstract:

The option to implement curricular internships with undergraduate students is a pedagogical option with some good results perceived by academic staff, employers, and among graduates in general and IT (Information Technology) in particular. Knowing that this type of exercise has never been so relevant, as one tries to give meaning to the future in a landscape of rapid and deep changes. We have as an example the potential disruptive impact on the jobs of advances in robotics, artificial intelligence and 3-D printing, which is a focus of fierce debate. It is in this context that more and more students and employers engage in the pursuit of career-promoting responses and business development, making their investment decisions of training and hiring. Three decades of experience and research in computer science degree and in information systems technologies degree at the Portucalense University, Portuguese private university, has provided strong evidence of its advantages. The Human Interaction Skills development as well as the attractiveness of such experiences for students are topics assumed as core in the Ccnception and management of the activities implemented in these study cycles. The objective of this paper is to gather evidence of the Human Interaction Skills explained and valued within the curriculum internship experiences of IT students employability. Data collection was based on the application of questionnaire to intern counselors and to students who have completed internships in these undergraduate courses in the last decade. The trainee supervisor, responsible for monitoring the performance of IT students in the evolution of traineeship activities, evaluates the following Human Interaction Skills: Motivation and interest in the activities developed, interpersonal relationship, cooperation in company activities, assiduity, ease of knowledge apprehension, Compliance with norms, insertion in the work environment, productivity, initiative, ability to take responsibility, creativity in proposing solutions, and self-confidence. The results show that these undergraduate courses promote the development of Human Interaction Skills and that these students, once they finish their degree, are able to initiate remunerated work functions, mainly by invitation of the institutions in which they perform curricular internships. Findings obtained from the present study contribute to widen the analysis of its effectiveness in terms of future research and actions in regard to the transition from Higher Education pathways to the Labour Market.

Keywords: human interaction skills, employability, internships, information technology, higher education

Procedia PDF Downloads 289
128 Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference

Authors: Nasser S. Shebka

Abstract:

Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective.

Keywords: fuzzy rule-based systems, fuzzy tense inference, intelligent systems, temporal modalities

Procedia PDF Downloads 92
127 Forensic Investigation: The Impact of Biometric-Based Solution in Combatting Mobile Fraud

Authors: Mokopane Charles Marakalala

Abstract:

Research shows that mobile fraud has grown exponentially in South Africa during the lockdown caused by the COVID-19 pandemic. According to the South African Banking Risk Information Centre (SABRIC), fraudulent online banking and transactions resulted in a sharp increase in cybercrime since the beginning of the lockdown, resulting in a huge loss to the banking industry in South Africa. While the Financial Intelligence Centre Act, 38 of 2001, regulate financial transactions, it is evident that criminals are making use of technology to their advantage. Money-laundering ranks among the major crimes, not only in South Africa but worldwide. This paper focuses on the impact of biometric-based solutions in combatting mobile fraud at the South African Risk Information. SABRIC had the challenges of a successful mobile fraud; cybercriminals could hijack a mobile device and use it to gain access to sensitive personal data and accounts. Cybercriminals are constantly looting the depths of cyberspace in search of victims to attack. Millions of people worldwide use online banking to do their regular bank-related transactions quickly and conveniently. This was supported by the SABRIC, who regularly highlighted incidents of mobile fraud, corruption, and maladministration in SABRIC, resulting in a lack of secure their banking online; they are vulnerable to falling prey to fraud scams such as mobile fraud. Criminals have made use of digital platforms since the development of technology. In 2017, 13 438 instances involving banking apps, internet banking, and mobile banking caused the sector to suffer gross losses of more than R250,000,000. The final three parties are forced to point fingers at one another while the fraudster makes off with the money. A non-probability sampling (purposive sampling) was used in selecting these participants. These included telephone calls and virtual interviews. The results indicate that there is a relationship between remote online banking and the increase in money-laundering as the system allows transactions to take place with limited verification processes. This paper highlights the significance of considering the development of prevention mechanisms, capacity development, and strategies for both financial institutions as well as law enforcement agencies in South Africa to reduce crime such as money-laundering. The researcher recommends that strategies to increase awareness for bank staff must be harnessed through the provision of requisite training and to be provided adequate training.

Keywords: biometric-based solution, investigation, cybercrime, forensic investigation, fraud, combatting

Procedia PDF Downloads 101
126 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital

Authors: Naser Zouri

Abstract:

Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.

Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance

Procedia PDF Downloads 304
125 Facial Recognition of University Entrance Exam Candidates using FaceMatch Software in Iran

Authors: Mahshid Arabi

Abstract:

In recent years, remarkable advancements in the fields of artificial intelligence and machine learning have led to the development of facial recognition technologies. These technologies are now employed in a wide range of applications, including security, surveillance, healthcare, and education. In the field of education, the identification of university entrance exam candidates has been one of the fundamental challenges. Traditional methods such as using ID cards and handwritten signatures are not only inefficient and prone to fraud but also susceptible to errors. In this context, utilizing advanced technologies like facial recognition can be an effective and efficient solution to increase the accuracy and reliability of identity verification in entrance exams. This article examines the use of FaceMatch software for recognizing the faces of university entrance exam candidates in Iran. The main objective of this research is to evaluate the efficiency and accuracy of FaceMatch software in identifying university entrance exam candidates to prevent fraud and ensure the authenticity of individuals' identities. Additionally, this research investigates the advantages and challenges of using this technology in Iran's educational systems. This research was conducted using an experimental method and random sampling. In this study, 1000 university entrance exam candidates in Iran were selected as samples. The facial images of these candidates were processed and analyzed using FaceMatch software. The software's accuracy and efficiency were evaluated using various metrics, including accuracy rate, error rate, and processing time. The research results indicated that FaceMatch software could accurately identify candidates with a precision of 98.5%. The software's error rate was less than 1.5%, demonstrating its high efficiency in facial recognition. Additionally, the average processing time for each candidate's image was less than 2 seconds, indicating the software's high efficiency. Statistical evaluation of the results using precise statistical tests, including analysis of variance (ANOVA) and t-test, showed that the observed differences were significant, and the software's accuracy in identity verification is high. The findings of this research suggest that FaceMatch software can be effectively used as a tool for identifying university entrance exam candidates in Iran. This technology not only enhances security and prevents fraud but also simplifies and streamlines the exam administration process. However, challenges such as preserving candidates' privacy and the costs of implementation must also be considered. The use of facial recognition technology with FaceMatch software in Iran's educational systems can be an effective solution for preventing fraud and ensuring the authenticity of university entrance exam candidates' identities. Given the promising results of this research, it is recommended that this technology be more widely implemented and utilized in the country's educational systems.

Keywords: facial recognition, FaceMatch software, Iran, university entrance exam

Procedia PDF Downloads 47
124 Interdisciplinary Evaluations of Children with Autism Spectrum Disorder in a Telehealth Arena

Authors: Janice Keener, Christine Houlihan

Abstract:

Over the last several years, there has been an increase in children identified as having Autism Spectrum Disorder (ASD). Specialists across several disciplines: mental health and medical professionals have been tasked with ensuring accurate and timely evaluations for children with suspected ASD. Due to the nature of the ASD symptom presentation, an interdisciplinary assessment and treatment approach best addresses the needs of the whole child. During the unprecedented COVID-19 Pandemic, clinicians were faced with how to continue with interdisciplinary assessments in a telehealth arena. Instruments that were previously used to assess ASD in-person were no longer appropriate measures to use due to the safety restrictions. For example, The Autism Diagnostic Observation Schedule requires examiners and children to be in very close proximity of each other and if masks or face shields are worn, they render the evaluation invalid. Similar issues arose with the various cognitive measures that are used to assess children such as the Weschler Tests of Intelligence and the Differential Ability Scale. Thus the need arose to identify measures that are able to be safely and accurately administered using safety guidelines. The incidence of ASD continues to rise over time. Currently, the Center for Disease Control estimates that 1 in 59 children meet the criteria for a diagnosis of ASD. The reasons for this increase are likely multifold, including changes in diagnostic criteria, public awareness of the condition, and other environmental and genetic factors. The rise in the incidence of ASD has led to a greater need for diagnostic and treatment services across the United States. The uncertainty of the diagnostic process can lead to an increased level of stress for families of children with suspected ASD. Along with this increase, there is a need for diagnostic clarity to avoid both under and over-identification of this condition. Interdisciplinary assessment is ideal for children with suspected ASD, as it allows for an assessment of the whole child over the course of time and across multiple settings. Clinicians such as Psychologists and Developmental Pediatricians play important roles in the initial evaluation of autism spectrum disorder. An ASD assessment may consist of several types of measures such as standardized checklists, structured interviews, and direct assessments such as the ADOS-2 are just a few examples. With the advent of telehealth clinicians were asked to continue to provide meaningful interdisciplinary assessments via an electronic platform and, in a sense, going to the family home and evaluating the clinical symptom presentation remotely and confidently making an accurate diagnosis. This poster presentation will review the benefits, limitations, and interpretation of these various instruments. The role of other medical professionals will also be addressed, including medical providers, speech pathology, and occupational therapy.

Keywords: Autism Spectrum Disorder Assessments, Interdisciplinary Evaluations , Tele-Assessment with Autism Spectrum Disorder, Diagnosis of Autism Spectrum Disorder

Procedia PDF Downloads 209
123 Continuity Through Best Practice. A Case Series of Complex Wounds Manage by Dedicated Orthopedic Nursing Team

Authors: Siti Rahayu, Khairulniza Mohd Puat, Kesavan R., Mohammad Harris A., Jalila, Kunalan G., Fazir Mohamad

Abstract:

The greatest challenge has been in establishing and maintaining the dedicated nursing team. Continuity is served when nurses are assigned exclusively for managing wound, where they can continue to build expertise and skills. In addition, there is a growing incidence of chronic wounds and recognition of the complexity involved in caring for these patients. We would like to share 4 cases with different techniques of wound management. 1st case, 39 years old gentleman with underlying rheumatoid arthritis with chronic periprosthetic joint infection of right total knee replacement presented with persistent drainage over right knee. Patient was consulted for two stage revision total knee replacement. However, patient only agreed for debridement and retention of implant. After debridement, large medial and lateral wound was treated with Instillation Negative Pressure Wound Therapy Dressings. After several cycle, the wound size reduced, and conventional dressing was applied. 2nd case, 58 years old gentleman with underlying diabetes presented with right foot necrotizing fasciitis with gangrene of 5th toe. He underwent extensive debridement of foot with rays’ amputation of 5th toe. Post debridement patient was started on Instillation Negative Pressure Wound Therapy Dressings. After several cycle of VAC, the wound bed was prepared, and he underwent split skin graft over right foot. 3 rd case, 60 years old gentleman with underlying diabetes mellitus presented with right foot necrotizing soft tissue infection. He underwent rays’ amputation and extensive wound debridement. Upon stabilization of general condition, patient was discharge with regular wound dressing by same nurse and doctor during each visit to clinic follow up. After 6 months of follow up, the wound healed well. 4th case, 38-year-old gentleman had alleged motor vehicle accident and sustained closed fracture right tibial plateau. Open reduction and proximal tibial locking plate were done. At 2 weeks post-surgery, the patient presented with warm, erythematous leg and pus discharge from the surgical site. Empirical antibiotic was started, and wound debridement was done. Intraoperatively, 50cc pus was evacuated, unhealthy muscle and tissue debrided. No loosening of the implant. Patient underwent multiple wound debridement. At 2 weeks post debridement wound healed well, but the proximal aspect was unable to close immediately. This left the proximal part of the implant to be exposed. Patient was then put on VAC dressing for 3 weeks until healthy granulation tissue closes the implant. Meanwhile, antibiotic was change according to culture and sensitivity. At 6 weeks post the first debridement, the wound was completely close, and patient was discharge home well. At 3 months post operatively, patient wound and fracture healed uneventfully and able to ambulate independently. Complex wounds are too serious to be dealt with. Team managing complex wound need continuous support through the provision of educational tools to support their professional development, engagement with local and international expert, as well as highquality products that increase efficiencies in services

Keywords: VAC (Vacuum Assisted Closure), empirical- initial antibiotics, NPWT- negative pressure wound therapy, NF- necrotizing fasciitis, gangrene- blackish discoloration due to poor blood supply

Procedia PDF Downloads 105
122 Phenotype and Psychometric Characterization of Phelan-Mcdermid Syndrome Patients

Authors: C. Bel, J. Nevado, F. Ciceri, M. Ropacki, T. Hoffmann, P. Lapunzina, C. Buesa

Abstract:

Background: The Phelan-McDermid syndrome (PMS) is a genetic disorder caused by the deletion of the terminal region of chromosome 22 or mutation of the SHANK3 gene. Shank3 disruption in mice leads to dysfunction of synaptic transmission, which can be restored by epigenetic regulation with both Lysine Specific Demethylase 1 (LSD1) inhibitors. PMS subjects result in a variable degree of intellectual disability, delay or absence of speech, autistic spectrum disorders symptoms, low muscle tone, motor delays and epilepsy. Vafidemstat is an LSD1 inhibitor in Phase II clinical development with a well-established and favorable safety profile, and data supporting the restoration of memory and cognition defects as well as reduction of agitation and aggression in several animal models and clinical studies. Therefore, vafidemstat has the potential to become a first-in-class precision medicine approach to treat PMS patients. Aims: The goal of this research is to perform an observational trial to psychometrically characterize individuals carrying deletions in SHANK3 and build a foundation for subsequent precision psychiatry clinical trials with vafidemstat. Methodology: This study is characterizing the clinical profile of 20 to 40 subjects, > 16-year-old, with genotypically confirmed PMS diagnosis. Subjects will complete a battery of neuropsychological scales, including the Repetitive Behavior Questionnaire (RBQ), Vineland Adaptive Behavior Scales, Escala de Observación para el Diagnostico del Autismo (Autism Diagnostic Observational Scale) (ADOS)-2, the Battelle Developmental Inventory and the Behavior Problems Inventory (BPI). Results: By March 2021, 19 patients have been enrolled. Unsupervised hierarchical clustering of the results obtained so far identifies 3 groups of patients, characterized by different profiles of cognitive and behavioral scores. The first cluster is characterized by low Battelle age, high ADOS and low Vineland, RBQ and BPI scores. Low Vineland, RBQ and BPI scores are also detected in the second cluster, which in contrast has high Battelle age and low ADOS scores. The third cluster is somewhat in the middle for the Battelle, Vineland and ADOS scores while displaying the highest levels of aggression (high BPI) and repeated behaviors (high RBQ). In line with the observation that female patients are generally affected by milder forms of autistic symptoms, no male patients are present in the second cluster. Dividing the results by gender highlights that male patients in the third cluster are characterized by a higher frequency of aggression, whereas female patients from the same cluster display a tendency toward higher repetitive behavior. Finally, statistically significant differences in deletion sizes are detected comparing the three clusters (also after correcting for gender), and deletion size appears to be positively correlated with ADOS and negatively correlated with Vineland A and C scores. No correlation is detected between deletion size and the BPI and RBQ scores. Conclusions: Precision medicine may open a new way to understand and treat Central Nervous System disorders. Epigenetic dysregulation has been proposed to be an important mechanism in the pathogenesis of schizophrenia and autism. Vafidemstat holds exciting therapeutic potential in PMS, and this study will provide data regarding the optimal endpoints for a future clinical study to explore vafidemstat ability to treat shank3-associated psychiatric disorders.

Keywords: autism, epigenetics, LSD1, personalized medicine

Procedia PDF Downloads 165