Search results for: material uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7587

Search results for: material uncertainty

5247 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 241
5246 Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate

Authors: R. Begum, M. M. R. Jahangir, M. Jahiruddin, M. R. Islam, M. M. Rahman, M. B. Hossain, P. Hossain

Abstract:

Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission.

Keywords: carbon dioxide emissions, methane emission, nitrogen rate, tillage

Procedia PDF Downloads 114
5245 'Antibody Exception' under Dispute and Waning Usage: Potential Influence on Patenting Antibodies

Authors: Xiangjun Kong, Dongning Yao, Yuanjia Hu

Abstract:

Therapeutic antibodies have become the most valuable and successful class of biopharmaceutical drugs, with a huge market potential and therapeutic advantages. Antibody patents are, accordingly, extremely important. As the technological limitation of the early stage of this field, the U. S. Patent and Trademark Offices (USPTO) have issued guidelines that suggest an exception for patents claiming a genus of antibodies that bind to a novel antigen, even in the absence of any experimental antibody production. This 'antibody exception' allowed for a broad scope on antibody claims, and led a global trend to patent antibodies without antibodies. Disputes around the pertinent patentability and written description issues remain particularly intense. Yet the validity of such patents had not been overtly challenged until Centocor v. Abbott, which restricted the broad scope of antibody patents and hit the brakes on the 'antibody exception'. The courts tend to uphold the requirement for adequate description of antibodies in the patent specifications, to avoid overreaching antibody claims. Patents following the 'antibody exception' are at risk of being found invalid for inadequately describing what they have claimed. However, the relation between the court and USPTO guidelines remains obscure, and the waning of the 'antibody exception' has led to further disputes around antibody patents. This uncertainty clearly affects patent applications, antibody innovations, and even relevant business performance. This study will give an overview of the emergence, debate, and waning usage of the 'antibody exception' in a number of enlightening cases, attempting to understand the specific concerns and the potential influence of antibody patents. We will then provide some possible strategies for antibody patenting, under the current considerations on the 'antibody exception'.

Keywords: antibody exception, antibody patent, USPTO (U. S. Patent and Trademark Offices) guidelines, written description requirement

Procedia PDF Downloads 158
5244 Identifying the Needs for Renewal of Urban Water Infrastructure Systems: Analysis of Material, Age, Types and Areas: Case Study of Linköping in Sweden

Authors: Eman Hegazy, Stefan Anderberg, Joakim Krook

Abstract:

Urban water infrastructure is crucial for efficient and reliable water supply in growing cities. With the growth of cities, the need for maintenance and renewal of these systems increases but often goes unfulfilled due to a variety of reasons, such as limited funding, political priorities, or lack of public awareness. Neglecting the renewal needs of these systems can lead to frequent malfunctions and reduced quality and reliability of water supply, as well as increased costs and health and environmental hazards. It is important for cities to prioritize investment in water infrastructure and develop long-term plans to address renewal needs. Drawing general conclusions about the rate of renewal of urban water infrastructure systems at an international or national level can be challenging due to the influence of local management decisions. In many countries, the responsibility for water infrastructure management lies with the municipal authorities, who are responsible for making decisions about the allocation of resources for repair, maintenance, and renewal. These decisions can vary widely based on factors such as local finances, political priorities, and public perception of the importance of water infrastructure. As a result, it is difficult to make generalizations about the rate of renewal across different countries or regions. In Sweden, the situation is not different, and the information from Svenskt Vatten indicates that the rate of renewal varies across municipalities and can be insufficient, leading to a buildup of maintenance and renewal needs. This study aims to examine the adequacy of the rate of renewal of urban water infrastructure in Linköping case city in Sweden. Using a case study framework, the study will assess the current status of the urban water system and the need for renewal. The study will also consider the role of factors such as proper identification processes, limited funding, competing for political priorities, and local management decisions in contributing to insufficient renewal. The study investigates the following questions: (1) What is the current status of water and sewerage networks in terms of length, age distribution, and material composition, estimated total water leakage in the network per year, damages, leaks, and outages occur per year, both overall and by district? (2) What are the main causes of these damages, leaks, and interruptions, and how are they related to lack of maintenance and renewal? (3) What is the current status of renewal work for the water and sewerage networks, including the renewal rate and changes over time, recent renewal material composition, and the budget allocation for renewal and emergency repairs? (4) What factors influence the need for renewal and what conditions should be considered in the assessment? The findings of the study provide insights into the challenges facing urban water infrastructure and identify strategies for improving the rate of renewal to ensure a reliable and sustainable water supply.

Keywords: case study, infrastructure, management, renewal need, Sweden

Procedia PDF Downloads 102
5243 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.

Keywords: HVFA concrete, NDT testing, residual strength

Procedia PDF Downloads 385
5242 The application of Gel Dosimeters and Comparison with other Dosimeters in Radiotherapy: A Literature Review

Authors: Sujan Mahamud

Abstract:

Purpose: A major challenge in radiotherapy treatment is to deliver precise dose of radiation to the tumor with minimum dose to the healthy normal tissues. Recently, gel dosimetry has emerged as a powerful tool to measure three-dimensional (3D) dose distribution for complex delivery verification and quality assurance. These dosimeters act both as a phantom and detector, thus confirming the versatility of dosimetry technique. The aim of the study is to know the application of Gel Dosimeters in Radiotherapy and find out the comparison with 1D and 2D dimensional dosimeters. Methods and Materials: The study is carried out from Gel Dosimeter literatures. Secondary data and images have been collected from different sources such as different guidelines, books, and internet, etc. Result: Analyzing, verifying, and comparing data from treatment planning system (TPS) is determined that gel dosimeter is a very excellent powerful tool to measure three-dimensional (3D) dose distribution. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous gel. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimized MRI acquisition protocol and a new MRI scanner. The method developed for comparing measuring gel data with calculated treatment plans, the gel dosimetry method, was proven to be a useful for radiation treatment planning verification. In 1D and 2D Film, the depth dose and lateral for RMSD are 1.8% and 2%, and max (Di-Dj) are 2.5% and 8%. Other side 2D+ ( 3D) Film Gel and Plan Gel for RMSDstruct and RMSDstoch are 2.3% & 3.6% and 1% & 1% and system deviation are -0.6% and 2.5%. The study is investigated that the result fined 2D+ (3D) Film Dosimeter is better than the 1D and 2D Dosimeter. Discussion: Gel Dosimeters is quality control and quality assurance tool which will used the future clinical application.

Keywords: gel dosimeters, phantom, rmsd, QC, detector

Procedia PDF Downloads 150
5241 Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites

Authors: Ali Mohammed Yimer, Ayalew H. Assen, Youssef Belmabkhout

Abstract:

This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits.

Keywords: calcium-based metal-organic frameworks, low-silica zeolites, porous materials, sustainable synthesis, valorization

Procedia PDF Downloads 37
5240 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability

Authors: Warda L. Panondi, Norihiro Izumi

Abstract:

Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.

Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model

Procedia PDF Downloads 207
5239 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.

Keywords: constant discharge, geometric factor, permeability coefficient, unsaturated soils

Procedia PDF Downloads 292
5238 The Domino Principle of Dobbs v Jackson Women’s Health Organization: The Gays Are Next!

Authors: Alan Berman, Mark Brady

Abstract:

The phenomenon of homophobia and transphobia in the United States detrimentally impacts the health, wellbeing, and dignity of school students who identify with the LGBTQ+ community. These negative impacts also compromise the participation of LGBTQ+ individuals in the wider life of educational domains and endanger the potential economic, social and cultural contribution this community can make to American society. The recent 6:3 majority decision of the US Supreme Court in Dobbs v Jackson Women’s Health Organization expressly overruled the 1973 decision in Roe v Wade and the 1992 Planned Parenthood v Casey decision. This study will canvass the bases upon which the court in Dobbs overruled longstanding precedent established in Roe and Casey. It will examine the potential implications for the LGBTQ community of the result in Dobbs. The potential far-reaching consequences of this case are foreshadowed in a concurring opinion by Justice Clarence Thomas, suggesting the Court should revisit all substantive due process cases. This includes notably the Lawrence v Texas case (invalidating sodomy laws criminalizing same-sex relations) and the Obergefellcase (upholding same-sex marriage). Finally, the study will examine the likely impact of the uncertainty brought about by the decision in Doddsfor LGBTQ students in US educational institutions. The actions of several states post-Dobbs, reflects and exacerbates the problems facing LGBTQ+ students and uncovers and highlights societal homophobia and transphobia.

Keywords: human rights, LGBT rights, right to personal dignity and autonomy, substantive due process rights

Procedia PDF Downloads 102
5237 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 110
5236 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 340
5235 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique

Authors: Tatiana S. Ogneva

Abstract:

Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.

Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure

Procedia PDF Downloads 120
5234 The Role of Privatization as a Moderator of the Impact of Non-Institutional Factors on the Performance of the Enterprises in Central and Eastern Europe

Authors: Margerita Topalli

Abstract:

In this paper, we analyze the impact of corruption (business environment, informal payments and state capture), crime and tax time, on the enterprise's performance during economic transition in the Central and Eastern Europe and the role of privatization as a moderator. We examine this effect by comparing the performance of the privatized enterprises and the state-owned-enterprises, while controlling for various forms of selection bias. The present study is based on firm-level panel data collected by the BEEPS for 27 transition countries over 2002, 2005, 2007, and 2011. In addition to firm characteristics, BEEPS collects valuable survey information on different forms of corruption, crime, tax time and firm ownership. We estimate the impact of corruption, crime, tax time on the different performance measures (sales, productivity, employment, labor costs and material costs) of the enterprise, whereby we control for firm ownership, with a special focus on the role of the privatization as a moderator. It argues that in general terms, the privatization has positive effects on the performance of enterprises during transition, but these effects are significantly different, depending on the examined performance measure (sales, productivity, employment, labor costs and material costs). When the privatization is effective, the privatized enterprises show a considerable performance improvements, particularly in terms of revenue growth and productivity growth. It also argues that the effects of privatization are different depending on the types of owner (outsider or insider) to whom it gives control. The results show that privatization to insider owners has no significant performance effect.

Keywords: effects of privatization, enterprise performance, state capture, corruption, firm ownership, economic transition, Central and Eastern Europe

Procedia PDF Downloads 321
5233 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method

Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong

Abstract:

Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.

Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model

Procedia PDF Downloads 371
5232 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 131
5231 Synthesis of Na-LSX Zeolite and Hydrosodalite from Polish Fly Ashes

Authors: Barbara Bialecka, Zdzislaw Adamczyk, Magdalena Cempa

Abstract:

In the work, the results of investigations into the hydrothermal zeolitization of fly ash from hard coal combustion in one of Polish Power Station have been presented. The chemical composition of the ash was determined by the method of X-ray fluorescence (XRF), whereas the phases of both fly ash and the products after synthesis were identified using microscopic observations, X-ray diffraction analysis (XRD) as well as electron scanning microscopy with measurements of the chemical compositions in micro areas (SEM/EDS). The synthesis was carried out with various concentrations of NaOH solution (3M, 4M and 6M) in the following conditions: synthesis temperature – 80ᵒC, synthesis time – 16 hours, volume of NaOH solution – 350ml, fly ash mass – 14g. The main chemical components of fly ash were SiO₂ and Al₂O₃, the contents of which reached 51.62 and 28.14%mas., respectively. The input ash contained mainly such phases as mullite, quarz, magnetite, and glass. The research results indicate that the phase composition of products after zeolitization was differentiated. The material after synthesis in 3M NaOH solution was found to contain mullite, quarz, magnetite, and Na-LSX zeolite. The products of synthesis in 4M NaOH solution were very similar to those in 3M solution (mullite, quarz, magnetite, Na-LSX zeolite), but they additionally contained hydrosodalite. The material after synthesis in 6M NaOH solution contains mullite, quarz, magnetite (similarly to synthesis in 3M and 4M NaOH solition) and additionally hydrosodalite. Therefore, the products of synthesis contain relic components from the fly ash input sample in the form of mullite, quarz, and magnetite, as well as new phases, which are Na-LSX zeolite and hydrosodalite. It should be noted that the products of synthesis in the case of 4M NaOH solution contained both new phases (Na-LSX zeolite and hydrosodalite), while the products from the extreme concentration of NaOH solutions (3M and 6M) contained only one of them. Observations in the scanning electron microscope revealed the new phases’ morphology. It was found that Na-LSX zeolite formed cubic crystals, whereas hydrosodalite formed characteristic aggregations. The results of investigations into the chemical composition in the micro area of phase grains in the products after synthesis reveal some dependencies, among others a characteristic increase in the content of sodium, related to the increased concentration of NaOH solution.

Keywords: Na-LSX, fly ash, hydrosodalite, zeolite

Procedia PDF Downloads 171
5230 Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement

Authors: Passant Youssef, Ahmed El-Tair, Amr El-Nemr

Abstract:

Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected.

Keywords: supplementary materials, glass powder, concrete, cementitious materials

Procedia PDF Downloads 210
5229 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater

Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj

Abstract:

In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.

Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation

Procedia PDF Downloads 68
5228 Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer

Authors: I. Benhsine, M. Hellou, F. Lominé, Y. Roques

Abstract:

During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one.

Keywords: discrete element method, granular materials, lifting flight, rotary dryer

Procedia PDF Downloads 324
5227 Enhanced Exchange Bias in Poly-crystalline Compounds through Oxygen Vacancy and B-site Disorder

Authors: Koustav Pal, Indranil Das

Abstract:

In recent times, perovskite and double perovskite (DP) systems attracts lot of interest as they provide a rich material platform for studying emergent functionalities like near-room-temperature ferromagnetic (FM) insulators, exchange bias (EB), magnetocaloric effects, colossal magnetoresistance, anisotropy, etc. These interesting phenomena emerge because of complex couplings between spin, charge, orbital, and lattice degrees of freedom in these systems. Various magnetic phenomena such as exchange bias, spin glass, memory effect, colossal magneto-resistance, etc. can be modified and controlled through antisite (B-site) disorder or controlling oxygen concentration of the material. By controlling oxygen concentration in SrFe0.5Co0.5O3 – δ (SFCO) (δ ∼ 0.3), we achieve intrinsic exchange bias effect with a large exchange bias field (∼1.482 Tesla) and giant coercive field (∼1.454 Tesla). Now we modified the B-site by introducing 10% iridium in the system. This modification give rise to the exchange bias field as high as 1.865 tesla and coercive field 1.863 tesla. Our work aims to investigate the effect of oxygen deficiency and B-site effect on exchange bias in oxide materials for potential technological applications. Structural characterization techniques including X-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy were utilized to determine crystal structure and particle size. X-ray photoelectron spectroscopy was used to identify valence states of the ions. Magnetic analysis revealed that oxygen deficiency resulted in a large exchange bias due to a significant number of ionic mixtures. Iridium doping was found to break interaction paths, resulting in various antiferromagnetic and ferromagnetic surfaces that enhance exchange bias.

Keywords: coercive field, disorder, exchange bias, spin glass

Procedia PDF Downloads 76
5226 Agrarian Distress and out Migration of Youths: Study of a Wet Land Village in Hirakud Command Area, Odisha

Authors: Kishor K. Podh

Abstract:

Agriculture in India treated as the backbone of its economy. It has been accommodated to more than 60 percent of its population as their economic base, directly or indirectly for their livelihood. Besides its significant role, the sharp declines in public investment and development in agriculture have witnessed. After independence Hirakud Command Area (HCA) popularly known as the Rice Bowl of State, due to its fabulous production and provides food to a larger part of the state. After the great green revolution and then liberalization agrarian families become overburden with the loan. They started working as wage laborer in other’s field and non-farm sectors to overcome from the uninvited indebtedness. Although production increases at present, still the youths of this area migrating outsides for job Tamil Nadu, Andhra Pradesh, Maharashtra, Gujarat, etc. Because agriculture no longer remains a profitable occupation; increasing input costs, the uncertainty of crops, improper pricing, poor marketing, etc. compels the youths to choose the alternative occupations. They work in industries (under contractors), construction workers and other menial jobs due to lack of skills and degrees. Kharmunda a village within HCA selected as per the convenience and 100 youth migrants were interviewed purposively selected who were present during data collection. The study analyses the types of migration; its similarity/differentiations, its determining factors, in tow geographical areas of Western Odisha, i.e., single crop and double crops in relation to agricultural situations.

Keywords: agrarian distress, double crops, Hirakud Command Area, indebtedness, out migration, Western Odisha

Procedia PDF Downloads 331
5225 Effects of Sulphide Mining on AISI 304 Stainless Steel

Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.

Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel

Procedia PDF Downloads 14
5224 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 306
5223 Influence of Thermal Annealing on Phase Composition and Structure of Quartz-Sericite Minerale

Authors: Atabaev I. G., Fayziev Sh. A., Irmatova Sh. K.

Abstract:

Raw materials with high content of Kalium oxide widely used in ceramic technology for prevention or decreasing of deformation of ceramic goods during drying process and under thermal annealing. Becouse to low melting temperature it is also used to decreasing of the temperature of thermal annealing during fabrication of ceramic goods [1,2]. So called “Porceline or China stones” - quartz-sericite (muscovite) minerals is also can be used for prevention of deformation as the content of Kalium oxide in muscovite is rather high (SiO2, + KAl2[AlSi3O10](OH)2). [3] . To estimation of possibility of use of this mineral for ceramic manufacture, in the presented article the influence of thermal processing on phase and a chemical content of this raw material is investigated. As well as to other ceramic raw materials (kaoline, white burning clays) the basic requirements of the industry to quality of "a porcelain stone» are following: small size of particles, relative high uniformity of disrtribution of components and phase, white color after burning, small content of colorant oxides or chromophores (Fe2O3, FeO, TiO2, etc) [4,5]. In the presented work natural minerale from the Boynaksay deposit (Uzbekistan) is investigated. The samples was mechanically polished for investigation by Scanning Electron Microscope. Powder with size of particle up to 63 μm was used to X-ray diffractometry and chemical analysis. The annealing of samples was performed at 900, 1120, 1350oC during 1 hour. Chemical composition of Boynaksay raw material according to chemical analysis presented in the table 1. For comparison the composition of raw materials from Russia and USA are also presented. In the Boynaksay quartz – sericite the average parity of quartz and sericite makes 55-60 and 30-35 % accordingly. The distribution of quartz and sericite phases in raw material was investigated using electron probe scanning electronic microscope «JEOL» JXA-8800R. In the figure 1 the scanning electron microscope (SEM) micrograps of the surface and the distributions of Al, Si and K atoms in the sample are presented. As it seen small granular, white and dense mineral includes quartz, sericite and small content of impurity minerals. Basically, crystals of quartz have the sizes from 80 up to 500 μm. Between quartz crystals the sericite inclusions having a tablet form with radiant structure are located. The size of sericite crystals is ~ 40-250 μm. Using data on interplanar distance [6,7] and ASTM Powder X-ray Diffraction Data it is shown that natural «a porcelain stone» quartz – sericite consists the quartz SiO2, sericite (muscovite type) KAl2[AlSi3O10](OH)2 and kaolinite Al203SiO22Н2О (See Figure 2 and Table 2). As it seen in the figure 3 and table 3a after annealing at 900oC the quartz – sericite contains quartz – SiO2 and muscovite - KAl2[AlSi3O10](OH)2, the peaks related with Kaolinite are absent. After annealing at 1120oC the full disintegration of muscovite and formation of mullite phase Al203 SiO2 is observed (the weak peaks of mullite appears in fig 3b and table 3b). After annealing at 1350oC the samples contains crystal phase of quartz and mullite (figure 3c and table 3с). Well known Mullite gives to ceramics high density, abrasive and chemical stability. Thus the obtained experimental data on formation of various phases during thermal annealing can be used for development of fabrication technology of advanced materials. Conclusion: The influence of thermal annealing in the interval 900-1350oC on phase composition and structure of quartz-sericite minerale is investigated. It is shown that during annealing the phase content of raw material is changed. After annealing at 1350oC the samples contains crystal phase of quartz and mullite (which gives gives to ceramics high density, abrasive and chemical stability).

Keywords: quartz-sericite, kaolinite, mullite, thermal processing

Procedia PDF Downloads 413
5222 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 197
5221 Optimization of Horticultural Crops by Using the Peats from Rawa Pening Lake as Soil Conditioner

Authors: Addharu Eri, Ningsih P. Lestari, Setyorini Adheliya, Syaiputri Khaidifah

Abstract:

Rawa Pening is a lake at the Ambarawa Basin in Central Java, Indonesia. It serves as a source of power (hydroelectricity), irrigation, and flood control. The potential of this lake is getting worse by the presence of aquatic plants (Eichhornia crassipes) that grows wild, and it can make the lake covered by the cumulation of rotten E. crassipes. This cumulation causes the sediment formation which has high organic material composition. Sediment formation will be lead into a shallowing of the lake and affect water’s quality. The deposition of organic material produces methane gas and hydrogen sulfide, which in rain would turn the water muddy and decompose. Decomposition occuring in the water due to microbe activity in lake's water. The shallowing of Rawa Pening Lake not only will physically can reduce water discharge, but it also has ecologically major impact on water organism. The condition of Rawa Pening Lake peats can not be considered as unimportant issue. One of the solutions that can be applied is by using the peats as a compound materials on growing horticultural crops because the organic materials content on the mineral soil is low, particularly on an old soils. The horticultural crops required organic materials for growth promoting. The horticultural crops that use in this research is mustard cabbage (Brassica sp.). Using Rawa Pening's peats as the medium of plants with high organic materials that also can ameliorate soil’s physical properties, and indirectly serves as soil conditioner. Research will be focus on the peat’s contents and mustard cabbage product’s content. The contents that will be examined is the N-available, Ca, Mg, K, P, and C-organic. The analysis of Ca, Mg, and K is use soil base saturation measurement method and extracting soil is use NH4OAC solution. The aim of this study is to use the peats of Rawa Pening Lake as soil conditioner and increase the productivity of Brassica sp.

Keywords: Brassica sp., peats, rawa pening lake, soil conditioner

Procedia PDF Downloads 250
5220 An Investigation of the Relationship between Organizational Culture and Innovation Type: A Mixed Method Study Using the OCAI in a Telecommunication Company in Saudi Arabia

Authors: A. Almubrad, R. Clouse, A. Aljlaoud

Abstract:

Organizational culture (OC) is recognized to have an influence on the propensity of organizations to innovate. It is also presumed that it may impede the innovation process from thriving within the organization. Investigating the role organizational culture plays in enabling or inhibiting innovation merits exploration to investigate organizational cultural attributes necessary to reach innovation goals. This study aims to investigate a preliminary matching heuristic of OC attributes to the type of innovation that has the potential to thrive within those attributes. A mixed methods research approach was adopted to achieve the research aims. Accordingly, participants from a national telecom company in Saudi Arabia took the Organizational Culture Assessment Instrument (OCAI). A further sample selected from the respondents’ pool holding the role of managing directors was interviewed in the qualitative phase. Our study findings reveal that the market culture type has a tendency to adopt radical innovations to disrupt the market and to preserve its market position. In contrast, we find that the adhocracy culture type tends to adopt the incremental innovation type and found this tends to be more convenient for employees due to its low levels of uncertainty. Our results are an encouraging indication that matching organizational culture attributes to the type of innovation aids in innovation management. This study carries limitations while drawing its findings from a limited sample of OC attributes that identify with the adhocracy and market culture types. An extended investigation is merited to explore other types of organizational cultures and their optimal innovation types.

Keywords: incremental innovation, radical innovation, organization culture, market culture, adhocracy culture, OACI

Procedia PDF Downloads 103
5219 Thematic English Textbook on Tasks Designed for a Public Educational Brazilian Context: Issues and Contributions

Authors: Fernanda Goulart, Rita de Cássia Barbirato

Abstract:

Task-based language teaching has received attention among researchers as it has been pointed out with the potential to provide more significant opportunities for using the target language and therefore generate successful language acquisition. Nevertheless, in the Brazilian context, few studies have analyzed the potential of tasks in English language acquisition. There is also a need for textbooks to meet the needs of Brazilian students. This work is part of doctoral research in its initial phase. It aims to demonstrate and discuss thematic textbook samples on tasks designed to be applied among high school and undergraduate students in a public technological educational context in São Paulo State, Brazil. It is a qualitative study. The data collection process for course design and textbook development initially included a survey administered to 159 students. Questions related to students’ English background knowledge, main learning interests, and needs. Most students reported difficulties communicating in English and showed a strong interest in a communicative English course. The theme “Cultural diversity” was chosen among other options provided. The textbook was then designed and comprised nine task cycles divided into four sequences. Cycles were composed of pre-tasks, tasks, and post-tasks. The main findings of this first phase of the research revealed that designing a task-based textbook is not easy and requires the necessary steps and lots of effort to meet students’ language needs. Several revisions were needed before the conclusion of the final version of the textbook. The material will be further applied in a three-month English course. In this presentation, we hope to contribute to discussions in research on task-based teaching. Also, we intend to support teachers with their knowledge of tasks and thematic material development in this field.

Keywords: task-based language teaching, language acquisition, English language teaching, task cycles

Procedia PDF Downloads 78
5218 Easy Way of Optimal Process-Storage Network Design

Authors: Gyeongbeom Yi

Abstract:

The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.

Keywords: analytic solution, optimal design, process-storage network

Procedia PDF Downloads 330