Search results for: green infrastructure network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8389

Search results for: green infrastructure network

6049 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 248
6048 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 90
6047 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment

Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref

Abstract:

In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.

Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment

Procedia PDF Downloads 187
6046 Energy Management System and Interactive Functions of Smart Plug for Smart Home

Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya

Abstract:

Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.

Keywords: energy management, load profile, smart plug, wireless sensor network

Procedia PDF Downloads 276
6045 Changes of Chemical Composition and Physicochemical Properties of Banana during Ethylene-Induced Ripening

Authors: Chiun-C.R. Wang, Po-Wen Yen, Chien-Chun Huang

Abstract:

Banana is produced in large quantities in tropical and subtropical areas. Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals. The ripening and maturity standards of banana vary from country to country depending on the expected shelf life of market. The compositions of bananas change dramatically during ethylene-induced ripening that are categorized as nutritive values and commercial utilization. Nevertheless, there is few study reporting the changes of physicochemical properties of banana starch during ethylene-induced ripening of green banana. The objectives of this study were to investigate the changes of chemical composition and enzyme activity of banana and physicochemical properties of banana starch during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana at the harvest stage could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment.

Keywords: ethylene-induced ripening, banana starch, resistant starch, soluble sugars, physicochemical properties, gelatinization enthalpy, pasting characteristics, microscopic appearance

Procedia PDF Downloads 480
6044 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN

Procedia PDF Downloads 135
6043 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber

Authors: Sibel Dikmen Kucuk, Yusuf Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining.

Keywords: EPDM, lignin, green materials, biodegradable fillers

Procedia PDF Downloads 134
6042 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 198
6041 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design

Authors: Giuseppe Timperio, Robert de Souza

Abstract:

Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.

Keywords: decision support, disaster preparedness, humanitarian logistics, network design

Procedia PDF Downloads 172
6040 An Analysis of Structural Relationship among Perceived Restorative Environment, Relaxing Experience, Subjective Vitality and the Health-Related Quality of Life of the Participants in Nature-Based Urban Outdoor Recreation

Authors: Lee Jin-Eui, Kim Jin-OK, Han Seung-Hoon, Kim Nam-Jo

Abstract:

Recently, there has been a growing interest in wellbeing where individuals pursue a healthy life. About the half of world population is living in cities, and the urban environment is negatively affecting the mental health of modern people. The stress level of urban dwellers continues to increase, and they pursue nature-based recreation activities to relieve their stresses. It was found that activities in green spaces are improving concentration, relieving mental stress, and positively affecting physical activities and social relationship, thus enhancing the quality of life. For that reason, studies have been continuously conducted on the role of nature, which is a green space for pursuing health and relieving the stress of urban dwellers. Therefore, this study investigated the effect of experiencing a restoration from nature-based outdoor recreation activities of urban dwellers on their quality of life for the groups with high and low-stress levels. The results of the analysis against visitors who trekked and climbed Mt. Bukhan National Park in Seoul, South Korea showed that the effect of perceiving restorative environment on relaxation, calmness and subjective vitality, and the effect of relaxation and calmness on the quality of life were similar in both groups. However, it was found that subjective vitality affected the quality of life in the group with the high-stress group, while it did not show a significant result in the low-stress group. This is because the high-stress group increased their belief in the future and themselves and vitality through nature-based outdoor activities, which in turn affected their quality of life, while people in the low-stress group normally have subjective vitality in their daily lives, not affected by nature-based outdoor recreation. This result suggests that urban dwellers feel relaxed and calm through nature-based outdoor recreation activities with perceived restorative environment, and such activities enhance their quality of life. Therefore, a wellbeing policy is needed to enhance the quality of life of citizens by creating green spaces in city centers for the promotion of public health.

Keywords: healing tourism, nature-based outdoor recreation, perceived restorative environment, quality of life

Procedia PDF Downloads 221
6039 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources

Procedia PDF Downloads 279
6038 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 93
6037 Value Proposition and Value Creation in Network Environments: An Experimental Study of Academic Productivity via the Application of Bibliometrics

Authors: R. Oleko, A. Saraceni

Abstract:

The aim of this research is to provide a rigorous evaluation of the existing academic productivity in relation to value proposition and creation in networked environments. Bibliometrics is a vigorous approach used to structure existing literature in an objective and reliable manner. To that aim, a thorough bibliometric analysis was performed in order to assess the large volume of the information encountered in a structured and reliable manner. A clear distinction between networks and service networks was considered indispensable in order to capture the effects of each network’s type properties on value creation processes. Via the use of bibliometric parameters, this review was able to capture the state-of-the-art in both value proposition and value creation consecutively. The results provide a rigorous assessment of the annual scientific production, the most influential journals, and the leading corresponding author countries. By means of citation analysis, the most frequently cited manuscripts and countries for each network type were identified. Moreover, by means of co-citation analysis, existing collaborative patterns were detected through the creation of reference co-citation networks and country collaboration networks. Co-word analysis was also performed in order to provide an overview of the conceptual structure in both networks and service networks. The acquired results provide a rigorous and systematic assessment of the existing scientific output in networked settings. As such, they positively contribute to a better understanding of the distinct impact of service networks on value proposition and value creation when compared to regular networks. The implications derived can serve as a guide for informed decision-making by practitioners during network formation and provide a structured evaluation that can stand as a basis for future research in the field.

Keywords: bibliometrics, co-citation analysis, networks, service networks, value creation, value proposition

Procedia PDF Downloads 206
6036 Smart Cities and Urban Engineering: Balancing Tradition, Sustainability, and Technological Integration

Authors: Ijeoma Georgiana Umahi Ayuba

Abstract:

As cities worldwide rapidly transition into "smart cities," urban planning faces both challenges and opportunities in integrating advanced technologies. This paper investigates how smart city infrastructure can incorporate cutting-edge technologies while preserving traditional values and ensuring environmental sustainability. By drawing on the principles of intelligent urbanism, it proposes a framework for developing smart cities that balances economic growth, social accessibility, and cultural heritage conservation. The framework emphasizes the need for urban planning that integrates efficiency, human-scale infrastructure, and regional cooperation to foster inclusivity and equity. Key to this approach is using appropriate technologies that enhance urban systems without compromising natural resources or cultural identities. Moreover, the paper highlights the importance of creating smart cities that prioritize human well-being through accessible social spaces and sustainable transit. This integrated approach to urban design ensures that technological advancements support not only the efficient functioning of cities but also their role as vibrant, sustainable communities. The paper advocates for policies and strategies that allow smart cities to thrive while maintaining a strong connection to both their heritage and the environment, ensuring that they meet the needs of current and future generations.

Keywords: smart cities, urban engineering, sustainability, technological integration, heritage conservation, intelligent urbanism

Procedia PDF Downloads 6
6035 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks

Authors: Adrian Ionita, Ana-Maria Ghimes

Abstract:

The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.

Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling

Procedia PDF Downloads 165
6034 Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration

Authors: Elżbieta Antczak

Abstract:

Cities offer important opportunities for economic development and for expanding access to basic services, including health care and education, for large numbers of people. Moreover, green areas (as an integral part of sustainable urban development) present a major opportunity for improving urban environments, quality of lives and livelihoods. This paper examines, using spatial concentration and spatial taxonomic measures, regional diversification of greenery in the cities of Poland. The analysis includes location quotients, Lorenz curve, Locational Gini Index, and the synthetic index of greenery and spatial statistics tools: (1) To verify the occurrence of strong concentration or dispersion of the phenomenon in time and space depending on the variable category, and, (2) To study if the level of greenery depends on the spatial autocorrelation. The data includes the greatest Polish cities, categories of the urban greenery (parks, lawns, street greenery, and green areas on housing estates, cemeteries, and forests) and the time span 2004-2015. According to the obtained estimations, most of cites in Poland are already taking measures to become greener. However, in the country there are still many barriers to well-balanced urban greenery development (e.g. uncontrolled urban sprawl, poor management as well as lack of spatial urban planning systems).

Keywords: greenery, urban areas, regional spatial diversification and concentration, spatial taxonomic measure

Procedia PDF Downloads 289
6033 The Use of Water Resources Yield Model at Kleinfontein Dam

Authors: Lungile Maliba, O. I. Nkwonta, E Onyari

Abstract:

Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.

Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model

Procedia PDF Downloads 142
6032 Optimization of Structures Subjected to Earthquake

Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei

Abstract:

To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.

Keywords: optimization, genetic algorithm, neural networks, self-organizing map

Procedia PDF Downloads 319
6031 Communication Policies of Turkey Related to European Union

Authors: Muhammet Erbay

Abstract:

The phenomenon of communication that has been studied by different disciplines has social, political and economical aspects. The scope of communication has extended from a traditional content to the modern world which is under the control of mass media. Nowadays, thanks to globalization and technological facilities, many companies, public or international institutions take advantage of new communication technologies and overhaul their policies. European Union (EU) is one of the effective institutions in this sphere. It aims to harmonize the communication infrastructure and policies of member countries which have gone through the process of political unification. It is a significant problem for the unification of EU to have legal restrictions or critical differences in communication facilities among countries while technology stands at the center of economic and social life. Therefore, EU institutions place a particular importance to their communication policies. Besides, communication processes have a vital importance in creating a European public opinion in the process of political integration. Based on the evaluation above, the aim of this paper is to analyze the cohesion process of Turkey that tries to take an active role in EU communication policies and has on-going negotiations. This article does not only confine itself to the technical details of communication policies but also aims to evaluate socio-political dimension of the process. Therefore, a corporate review has been featured in the study and Turkey's compliance process in communication policies on European Union has been evaluated by the means of deduction method. Some problematic areas have been identified in compliance process on communication policies such as human rights and minority rights, whereas compliance process on communication infrastructure and technology proceeds effectively.

Keywords: communication policies, European Union, integration, Turkey

Procedia PDF Downloads 416
6030 Role of Tourism and Hospitality Industry in economic Development

Authors: S. M. Abdus Sattar

Abstract:

Introduction: The objectives of the study are to assess different aspects of the tourism and hospitality industry, analyze its contributions to the Gross Domestic Product of Bangladesh, identify the importance of the tourism and hospitality industry, explore future prospects in the sectors, identify challenges and provide recommendations for the development of these industries. The study explores the significance of the tourism and hospitality industry in economic growth and defines its role. Tourism is one of the fastest-growing industries in the world today. Methodology: The study adopts statistical methods and utilizes both quantitative and qualitative research techniques. Data is collected through surveys, interviews, visitor registration, online platforms and analysis of various tourism-related records. The study focuses on marketing, management, attractions and services in the tourism and hospitality sectors. Result: The tourism and hospitality industry offers great opportunities for emerging economies and developing countries. The industry provides job creation, infrastructure development, cultural assets and environmental conservation, essential skills development, revenue generated, foreign exchange earned, economic growth and reduced poverty and inequality. Discussion: The study focuses on improving infrastructure and service quality in the tourism and hospitality industry to attract tourists. The industry significantly contributes to the Gross Domestic Product of Bangladesh. It highlights how the tourism and hospitality sectors can drive economic development, reduce poverty and promote cultural and environmental conservation. It also explores the challenges and future prospects in the tourism and hospitality sectors. Conclusion and Future Scope: The opportunities for tourism of Bangladesh are agricultural tourism, religious tourism, sports tourism, eco-tourism, educational tourism, rural tourism and cultural tourism. However, there is a lack of research and plans to explore the development of the industry. The tourism and hospitality industry offers numerous opportunities for growth and development. There are job opportunities for travel consultants, tour operators, event planners, hotel managers, travel writers, tourism development officers and airline executives in the future. The study recommends to development of tourism infrastructure, maintaining tourist destinations, railway stations, airports, rest houses, hotels and improving the quality of services.

Keywords: tourism, hospitality, employment, economic, development

Procedia PDF Downloads 35
6029 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 134
6028 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations

Authors: Shih-Yan Chen, Shin-Shin Kao

Abstract:

In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.

Keywords: dual-cubes, dual-cube extensive networks, dual-cube-like networks, hypercubes, fault-tolerant hamiltonian property

Procedia PDF Downloads 474
6027 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms

Authors: Nima Mahmoudi, Hamzeh Khazaei

Abstract:

Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.

Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization

Procedia PDF Downloads 183
6026 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 141
6025 The Advancement of Environmental Impact Assessment for 5th Transmission Natural Gas Pipeline Project in Thailand

Authors: Penrug Pengsombut, Worawut Hamarn, Teerawuth Suwannasri, Kittiphong Songrukkiat, Kanatip Ratanachoo

Abstract:

PTT Public Company Limited or simply PTT has played an important role in strengthening national energy security of the Kingdom of Thailand by transporting natural gas to customers in power, industrial and commercial sectors since 1981. PTT has been constructing and operating natural gas pipeline system of over 4,500-km network length both onshore and offshore laid through different area classifications i.e., marine, forest, agriculture, rural, urban, and city areas. During project development phase, an Environmental Impact Assessment (EIA) is conducted and submitted to the Office of Natural Resources and Environmental Policy and Planning (ONEP) for approval before project construction commencement. Knowledge and experiences gained and revealed from EIA in the past projects definitely are developed to further advance EIA study process for newly 5th Transmission Natural Gas Pipeline Project (5TP) with approximately 415 kilometers length. The preferred pipeline route is selected and justified by SMARTi map, an advance digital one-map platform with consists of multiple layers geographic and environmental information. Sensitive area impact focus (SAIF) is a practicable impact assessment methodology which appropriate for a particular long distance infrastructure project such as 5TP. An environmental modeling simulation is adopted into SAIF methodology for impact quantified in all sensitive areas whereas other area along pipeline right-of-ways is typically assessed as an impact representative. Resulting time and cost deduction is beneficial to project for early start.

Keywords: environmental impact assessment, EIA, natural gas pipeline, sensitive area impact focus, SAIF

Procedia PDF Downloads 414
6024 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain

Authors: Ganesh Dattatraya Saratale, Min Kyu Oh

Abstract:

Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.

Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation

Procedia PDF Downloads 542
6023 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian

Abstract:

In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.

Keywords: cottonseed oil, crystallization, gossypol, green-leaf

Procedia PDF Downloads 115
6022 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 233
6021 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 179
6020 Establishment of Bit Selective Mode Storage Covert Channel in VANETs

Authors: Amarpreet Singh, Kimi Manchanda

Abstract:

Intended for providing the security in the VANETS (Vehicular Ad hoc Network) scenario, the covert storage channel is implemented through data transmitted between the sender and the receiver. Covert channels are the logical links which are used for the communication purpose and hiding the secure data from the intruders. This paper refers to the Establishment of bit selective mode covert storage channels in VANETS. In this scenario, the data is being transmitted with two modes i.e. the normal mode and the covert mode. During the communication between vehicles in this scenario, the controlling of bits is possible through the optional bits of IPV6 Header Format. This implementation is fulfilled with the help of Network simulator.

Keywords: covert mode, normal mode, VANET, OBU, on-board unit

Procedia PDF Downloads 370