Search results for: resolution digital data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27594

Search results for: resolution digital data

25284 Testing Nature Based Solutions for Air Quality Improvement: Aveiro Case Study

Authors: A. Ascenso, C. Silveira, B. Augusto, S. Rafael, S. Coelho, J. Ferreira, A. Monteiro, P. Roebeling, A. I. Miranda

Abstract:

Innovative nature-based solutions (NBSs) can provide answers to the challenges that urban areas are currently facing due to urban densification and extreme weather conditions. The effects of NBSs are recognized and include improved quality of life, mental and physical health and improvement of air quality, among others. Part of the work developed in the scope of the UNaLab project, which aims to guide cities in developing and implementing their own co-creative NBSs, intends to assess the impacts of NBSs on air quality, using Eindhoven city as a case study. The state-of-the-art online air quality modelling system WRF-CHEM was applied to simulate meteorological and concentration fields over the study area with a spatial resolution of 1 km2 for the year 2015. The baseline simulation (without NBSs) was validated by comparing the model results with monitored data retrieved from the Eindhoven air quality database, showing an adequate model performance. In addition, land use changes were applied in a set of simulations to assess the effects of different types of NBSs. Finally, these simulations were compared with the baseline scenario and the impacts of the NBSs were assessed. Reductions on pollutant concentrations, namely for NOx and PM, were found after the application of the NBSs in the Eindhoven study area. The present work is particularly important to support public planners and decision makers in understanding the effects of their actions and planning more sustainable cities for the future.

Keywords: air quality, modelling approach, nature based solutions, urban area

Procedia PDF Downloads 238
25283 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 146
25282 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer

Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe

Abstract:

The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.

Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 114
25281 Adoption of Big Data by Global Chemical Industries

Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta

Abstract:

The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.

Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science

Procedia PDF Downloads 85
25280 Organizational Climate being Knowledge Sharing Oriented: A Fuzzy-Set Analysis

Authors: Paulo Lopes Henriques, Carla Curado

Abstract:

According to literature, knowledge sharing behaviors are influenced by organizational values and structures, namely organizational climate. The manuscript examines the antecedents of the knowledge sharing oriented organizational climate. According to theoretical expectations the study adopts the following explanatory conditions: knowledge sharing costs, knowledge sharing incentives, perceptions of knowledge sharing contributing to performance and tenure. The study confronts results considering two groups of firms: nondigital (firms without intranet) vs digital (firms with intranet). The paper applies fsQCA technique to analyze data by using fsQCA 2.5 software (www.fsqca.com) testing several conditional arguments to explain the outcome variable. Main results strengthen claims on the relevancy of the contribution of knowledge sharing to performance. Secondly, evidence brings tenure - an explanatory condition that is associated to organizational memory – to the spotlight. The study provides an original contribution not previously addressed in literature, since it identifies the sufficient conditions sets to knowledge sharing oriented organizational climate using fsQCA, which is, to our knowledge, a novel application of the technique.

Keywords: fsQCA, knowledge sharing oriented organizational climate, knowledge sharing costs, knowledge sharing incentives

Procedia PDF Downloads 328
25279 Unveiling Subconscious Autopoietic Reflexive Feedback Mechanisms of Second Order Governance from the Narration of Cognitive Autobiography of an ICT Lab during the Digital Revolution

Authors: Gianni Jacucci

Abstract:

We present a retrospective on the development of a research group over the past 30+ years. We reflect on a change in observing the experience (1990-2024) of a university sociotechnical research group dedicated to instill change for innovation in client organisations and enterprises. Its cognitive and action trajectory is influenced by subjective factors: intention and interpretation. Continuity and change are both present: the trajectory of the group exhibits the dynamic interplay of two components of subjectivity, a change of focus in persistence of scheme, and a tension between stability and change. The paper illustrates the meanings the group gave to their practice while laying down mission-critical theoretical considerations – autopoiesis-. The aim of the work is to experience a fragment of phenomenological understanding (PU) of the cognitive dynamics of an STS-aware ICT uptake Laboratory during the digital revolution. PU is an intuitive going along the meaning, while staying close and present to the total situation of the phenomenon. Reading the codes that we observers invent in order to codify what nature is about, thus unveiling subconscious, autopoietic, reflexive feedback mechanisms of second order governance from work published over three decades by the ICT Lab, as if it were the narration of its cognitive autobiography. The paper brings points of discussion and insights of relevance for the STS community. It could be helpful in understanding the history of the community and in providing a platform for discussions on future developments. It can also serve as an inspiration and a historical capture for those entering the field.

Keywords: phenomenology, subjectivity, autopoiesis, interpretation schemes, change for innovation, socio technical research, social study of information systems

Procedia PDF Downloads 31
25278 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 63
25277 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization

Authors: Tomas Linas Šepetys

Abstract:

In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.

Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services

Procedia PDF Downloads 74
25276 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 416
25275 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data

Procedia PDF Downloads 412
25274 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork

Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting

Abstract:

This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.

Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark

Procedia PDF Downloads 268
25273 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 431
25272 Hybrid Speciation and Morphological Differentiation in Senecio (Senecioneae, Asteraceae) from the Andes

Authors: Luciana Salomon

Abstract:

The Andes hold one of the highest plant species diversity in the world. How such diversity originated is one of the most intriguing questions in studies addressing the pattern of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as major triggers of this spectacular diversity. The Andes are one of the most species-rich area for the largest genus from the Asteraceae family, Senecio. There, the genus presents an incredible variation in growth form and ecological niche space. If this diversity of Andean Senecio can be explained by a monophyletic origin and subsequent radiation has not been tested up to now. Previous studies trying to disentangle the evolutionary history of some Andean Senecio struggled with the relatively low resolution and support of the phylogenies, which is indicative of recently radiated groups. Using Hyb-Seq, a powerful approach is available to address phylogenetic questions in groups whose evolutionary histories are recent and rapid. This approach was used for Senecio to build a phylogenetic backbone on which to study the mechanisms shaping its hyper-diversity in the Andes, focusing on Senecio ser. Culcitium, an exclusively Andean and well circumscribed group presenting large morphological variation and which is widely distributed across the Andes. Hyb-Seq data for about 130 accessions of Seneciowas generated. Using standard data analysis work flows and a newly developed tool to utilize paralogs for phylogenetic reconstruction, robustness of the species treewas investigated. Fully resolved and moderately supported species trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within this group, some species formed well-supported clades congruent with morphology, while some species would not have exclusive ancestry, in concordance with previous studies showing a geographic differentiation. Additionally, paralogs were detected for a high number of loci, indicating duplication events and hybridization, known to be common in Senecio ser. Culcitium might have lead to hybrid speciation. The rapid diversification of the group seems to have followed a south-north distribution throughout the Andes, having accelerated in the conquest of new habitats more recently available: i.e., Montane forest, Paramo, and Superparamo.

Keywords: evolutionary radiations, andes, paralogy, hybridization, senecio

Procedia PDF Downloads 129
25271 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
25270 Reading as Moral Afternoon Tea: An Empirical Study on the Compensation Effect between Literary Novel Reading and Readers’ Moral Motivation

Authors: Chong Jiang, Liang Zhao, Hua Jian, Xiaoguang Wang

Abstract:

The belief that there is a strong relationship between reading narrative and morality has generally become the basic assumption of scholars, philosophers, critics, and cultural critics. The virtuality constructed by literary novels inspires readers to regard the narrative as a thinking experiment, creating the distance between readers and events so that they can freely and morally experience the positions of different roles. Therefore, the virtual narrative combined with literary characteristics is always considered as a "moral laboratory." Well-established findings revealed that people show less lying and deceptive behaviors in the morning than in the afternoon, called the morning morality effect. As a limited self-regulation resource, morality will be constantly depleted with the change of time rhythm under the influence of the morning morality effect. It can also be compensated and restored in various ways, such as eating, sleeping, etc. As a common form of entertainment in modern society, literary novel reading gives people more virtual experience and emotional catharsis, just as a relaxing afternoon tea that helps people break away from fast-paced work, restore physical strength, and relieve stress in a short period of leisure. In this paper, inspired by the compensation control theory, we wonder whether reading literary novels in the digital environment could replenish a kind of spiritual energy for self-regulation to compensate for people's moral loss in the afternoon. Based on this assumption, we leverage the social annotation text content generated by readers in digital reading to represent the readers' reading attention. We then recognized the semantics and calculated the readers' moral motivation expressed in the annotations and investigated the fine-grained dynamics of the moral motivation changing in each time slot within 24 hours of a day. Comprehensively comparing the division of different time intervals, sufficient experiments showed that the moral motivation reflected in the annotations in the afternoon is significantly higher than that in the morning. The results robustly verified the hypothesis that reading compensates for moral motivation, which we called the moral afternoon tea effect. Moreover, we quantitatively identified that such moral compensation can last until 14:00 in the afternoon and 21:00 in the evening. In addition, it is interesting to find that the division of time intervals of different units impacts the identification of moral rhythms. Dividing the time intervals by four-hour time slot brings more insights of moral rhythms compared with that of three-hour and six-hour time slot.

Keywords: digital reading, social annotation, moral motivation, morning morality effect, control compensation

Procedia PDF Downloads 149
25269 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms

Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.

Abstract:

Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.

Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery

Procedia PDF Downloads 175
25268 Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) Technologies in Road Construction Project Monitoring and Management: Case Study of a Project in Cyprus

Authors: Yiannis Vacanas, Kyriacos Themistocleous, Athos Agapiou, Diofantos Hadjimitsis

Abstract:

Building Information Modelling (BIM) technology is considered by construction professionals as a very valuable process in modern design, procurement and project management. Construction professionals of all disciplines can use a single 3D model which BIM technology provides, to design a project accurately and furthermore monitor the progress of construction works effectively and efficiently. Unmanned Aerial Vehicles (UAVs), a technology initially developed for military applications, is now without any difficulty accessible and has already been used by commercial industries, including the construction industry. UAV technology has mainly been used for collection of images that allow visual monitoring of building and civil engineering projects conditions in various circumstances. UAVs, nevertheless, have undergone significant advances in equipment capabilities and now have the capacity to acquire high-resolution imagery from many angles in a cost effective manner, and by using photogrammetry methods, someone can determine characteristics such as distances, angles, areas, volumes and elevations of an area within overlapping images. In order to examine the potential of using a combination of BIM and UAV technologies in construction project management, this paper presents the results of a case study of a typical road construction project where the combined use of the two technologies was used in order to achieve efficient and accurate as-built data collection of the works progress, with outcomes such as volumes, and production of sections and 3D models, information necessary in project progress monitoring and efficient project management.

Keywords: BIM, project management, project monitoring, UAV

Procedia PDF Downloads 303
25267 Adoption of Proactive and Reactive Supply Chain Resilience Strategies: A Comparison between Apparel and Construction Industries in Sri Lanka

Authors: Anuradha Ranawakage, Chathurani Silva

Abstract:

With the growing expansion of global businesses, supply chains are increasingly exposed to numerous disruptions. Organizations adopt various strategies to mitigate the impact of these disruptions. Depending on the variations in the conditions and characteristics of supply chains, the adoption of resilience strategies may vary across industries. However, these differences are largely unexplored in the existing literature. Hence, this study aims to evaluate the adoption of three proactive strategies: proactive collaboration, digital connectivity, integrated SC risk management, and three reactive strategies: reactive collaboration, inventory and reserve capacity, and lifeline maintenance in the apparel and construction industries in Sri Lanka. An online questionnaire was used to collect data on the implementation of resilience strategies from a sample of 162 apparel and 185 construction companies operating in Sri Lanka. This research makes a significant contribution to the field of supply chain management by assessing the extent to which different resilience strategies are functioned within the apparel and construction industries in Sri Lanka, particularly in an era after a global pandemic that significantly disrupted supply chains all around the world.

Keywords: apparel, construction, proactive strategies, reactive strategies, supply chain resilience

Procedia PDF Downloads 56
25266 New Stratigraphy Profile of Classic Nihewan Basin Beds, Hebei, Northern China

Authors: Arya Farjand

Abstract:

The Nihewan Basin is a critical region in order to understand the Plio-Pleistocene paleoenvironment and its fauna in Northern China. The rich fossiliferous, fluvial-lacustrine sediments around the Nihewan Village hosted the specimens known as the Classic Nihewan Fauna. The primary excavations in the early 1920-30s produced more than 2000 specimens housed in Tianjin and Paris Museum. Nevertheless, the exact locality of excavations, fossil beds, and the reliable ages remained ambiguous until recent paleomagnetic studies and extensive work in conjunction sites. In this study, for the first time, we successfully relocated some of the original excavation sites. We reexamined more than 1500 specimens held in Tianjin Museum and cited their locality numbers and properties. During the field-season of 2017-2019, we visited the Xiashagou Valley. By reading the descriptions of the original site, utilization of satellite pictures, and comparing them with the current geomorphology of the area, we ensured the exact location of 26 of these sites and 17 fossil layers. Furthermore, by applying the latest technologies, such as GPS, Compass, digital barometers, laser measurer, and Abney level, we ensured the accuracy of the measurement. We surveyed 133-meter thickness of the deposits. Ultimately by applying the available Paleomagnetic data for this section, we estimated the ages of different horizons. The combination of our new data and previously published researches present a unique age control for the Classic Nihewan Fauna. These findings prove the hypothesis in which the Classic Nihewan Fauna belongs to different horizons, ranging from before Reunion up to after Olduvai earth geomagnetic field excursion (2.2-1.7 Mya).

Keywords: classic Nihewan basin fauna, Olduvai excursion, Pleistocene, stratigraphy

Procedia PDF Downloads 141
25265 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 344
25264 The GRIT Study: Getting Global Rare Disease Insights Through Technology Study

Authors: Aneal Khan, Elleine Allapitan, Desmond Koo, Katherine-Ann Piedalue, Shaneel Pathak, Utkarsh Subnis

Abstract:

Background: Disease management of metabolic, genetic disorders is long-term and can be cumbersome to patients and caregivers. Patient-Reported Outcome Measures (PROMs) have been a useful tool in capturing patient perspectives to help enhance treatment compliance and engagement with health care providers, reduce utilization of emergency services, and increase satisfaction with their treatment choices. Currently, however, PROMs are collected during infrequent and decontextualized clinic visits, which makes translation of patient experiences challenging over time. The GRIT study aims to evaluate a digital health journal application called Zamplo that provides a personalized health diary to record self-reported health outcomes accurately and efficiently in patients with metabolic, genetic disorders. Methods: This is a randomized controlled trial (RCT) (1:1) that assesses the efficacy of Zamplo to increase patient activation (primary outcome), improve healthcare satisfaction and confidence to manage medications (secondary outcomes), and reduce costs to the healthcare system (exploratory). Using standardized online surveys, assessments will be collected at baseline, 1 month, 3 months, 6 months, and 12 months. Outcomes will be compared between patients who were given access to the application versus those with no access. Results: Seventy-seven patients were recruited as of November 30, 2021. Recruitment for the study commenced in November 2020 with a target of n=150 patients. The accrual rate was 50% from those eligible and invited for the study, with the majority of patients having Fabry disease (n=48) and the remaining having Pompe disease and mitochondrial disease. Real-time clinical responses, such as pain, are being measured and correlated to disease-modifying therapies, supportive treatments like pain medications, and lifestyle interventions. Engagement with the application, along with compliance metrics of surveys and journal entries, are being analyzed. An interim analysis of the engagement data along with preliminary findings from this pilot RCT, and qualitative patient feedback will be presented. Conclusions: The digital self-care journal provides a unique approach to disease management, allowing patients direct access to their progress and actively participating in their care. Findings from the study can help serve the virtual care needs of patients with metabolic, genetic disorders in North America and the world over.

Keywords: eHealth, mobile health, rare disease, patient outcomes, quality of life (QoL), pain, Fabry disease, Pompe disease

Procedia PDF Downloads 151
25263 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System

Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma

Abstract:

This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.

Keywords: EDFA, FRA, WDM, Q factor, BER

Procedia PDF Downloads 354
25262 The Roles of ECOWAS Parliament on Regional Integration of the West African Sub-Region

Authors: Sani Shehu, Mohd Afandi Salleh

Abstract:

Parliament is a law making body which provided at national, state, province and territorial level playing a parliamentary role of representing people, law making, peace, and conflict resolution, ratifying and incorporating international convention into municipal law. Parliaments are created globally to give solid legitimacy to good governance under democratic system of government, and the representatives must be elected by the people, so the ECOWAS parliament is entitled to have this legitimacy, where members must be elected by adult people among the citizens of ECOWAS member states. This paper will discuss on the roles that ECOWAS parliament plays for the achievement of regional integration and economic goals of development and cooperation in the sub-region.

Keywords: ECOWAS parliament, composition, competence, power

Procedia PDF Downloads 479
25261 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 316
25260 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 41
25259 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 163
25258 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment

Authors: Kunihisa Kakumoto

Abstract:

Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.

Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation

Procedia PDF Downloads 110
25257 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 119
25256 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions

Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi

Abstract:

This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.

Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces

Procedia PDF Downloads 276
25255 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

Authors: J. Plocek, P. Holec, S. Kubickova, B. Pacakova, I. Matulkova, A. Mantlikova, I. Němec, D. Niznansky, J. Vejpravova

Abstract:

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nano crystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nano composites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900–1200 °C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nano crystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ~ 4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nano particles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nano crystals were found to be just moderately modified in comparison to the bulk phases.

Keywords: sol-gel method, nanocomposites, Rietveld refinement, Raman spectroscopy, Fourier transform infrared spectroscopy, magnetic properties, spinel, chromite

Procedia PDF Downloads 216