Search results for: real volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7737

Search results for: real volume

5427 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+

Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa

Abstract:

Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.

Keywords: adsorption, acidity, ion exchange, zeolite

Procedia PDF Downloads 197
5426 Random Variation of Treated Volumes in Fractionated 2D Image Based HDR Brachytherapy for Cervical Cancer

Authors: R. Tudugala, B. M. A. I. Balasooriya, W. M. Ediri Arachchi, R. W. M. W. K. Rathnayake, T. D. Premaratna

Abstract:

Brachytherapy involves placing a source of radiation near the cancer site which gives promising prognosis for cervical cancer treatments. The purpose of this study was to evaluate the effect of random variation of treated volumes in between fractions in the 2D image based fractionated high dose rate brachytherapy for cervical cancer at National Cancer Institute Maharagama, Sri Lanka. Dose plans were analyzed for 150 cervical cancer patients with orthogonal radiographs (2D) based brachytherapy. ICRU treated volumes was modeled by translating the applicators with the help of “Multisource HDR plus software”. The difference of treated volumes with respect to the applicator geometry was analyzed by using SPSS 18 software; to derived patient population based estimates of delivered treated volumes relative to ideally treated volumes. Packing was evaluated according to bladder dose, rectum dose and geometry of the dose distribution by three consultant radiation oncologist. The difference of treated volumes depends on types of the applicators, which was used in fractionated brachytherapy. The means of the “Difference of Treated Volume” (DTV) for “Evenly activated tandem (ET)” length” group was ((X_1)) -0.48 cm3 and ((X_2)) 11.85 cm3 for “Unevenly activated tandem length (UET) group. The range of the DTV for ET group was 35.80 cm3 whereas UET group 104.80 cm3. One sample T test was performed to compare the DTV with “Ideal treatment volume difference (0.00cm3)”. It is evident that P value was 0.732 for ET group and for UET it was 0.00 moreover independent two sample T test was performed to compare ET and UET groups and calculated P value was 0.005. Packing was evaluated under three categories 59.38% used “Convenient Packing Technique”, 33.33% used “Fairly Packing Technique” and 7.29% used “Not Convenient Packing” in their fractionated brachytherapy treatments. Random variation of treated volume in ET group is much lower than UET group and there is a significant difference (p<0.05) in between ET and UET groups which affects the dose distribution of the treatment. Furthermore, it can be concluded nearly 92.71% patient’s packing were used acceptable packing technique at NCIM, Sri Lanka.

Keywords: brachytherapy, cervical cancer, high dose rate, tandem, treated volumes

Procedia PDF Downloads 201
5425 Towards Positive Identity Construction for Japanese Non-Native English Language Teachers

Authors: Yumi Okano

Abstract:

The low level of English proficiency among Japanese people has been a problem for a long time. Japanese non-native English language teachers, under social or ideological constraints, feel a gap between government policy and their language proficiency and cannot maintain high self-esteem. This paper focuses on current Japanese policies and the social context in which teachers are placed and examines the measures necessary for their positive identity formation from a macro-meso-micro perspective. Some suggestions for achieving this are: 1) Teachers should free themselves from the idea of native speakers and embrace local needs and accents, 2) Teachers should be involved in student discussions as facilitators and individuals so that they can be good role models for their students, and 3) Teachers should invest in their classrooms. 4) Guidelines and training should be provided to help teachers gain confidence. In addition to reducing the workload to make more time available, 5) expanding opportunities for investment outside the classroom into the real world is necessary.

Keywords: language teacher identity, native speakers, government policy, critical pedagogy, investment

Procedia PDF Downloads 104
5424 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside

Authors: Benseghir Omar, Bahmed Mohamed

Abstract:

In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.

Keywords: thermal transfer, mixed convection, square cavity, finite volume method

Procedia PDF Downloads 433
5423 Comparison of Different DNA Extraction Platforms with FFPE tissue

Authors: Wang Yanping Karen, Mohd Rafeah Siti, Park MI Kyoung

Abstract:

Formalin-fixed paraffin embedded (FFPE) tissue is important in the area of oncological diagnostics. This method of preserving tissues enabling them to be stored easily at ambient temperature for a long time. This decreases the risk of losing the DNA quantity and quality after extraction, reducing sample wastage, and making FFPE more cost effective. However, extracting DNA from FFPE tissue is a challenge as DNA purified is often highly cross-linked, fragmented, and degraded. In addition, this causes problems for many downstream processes. In this study, there will be a comparison of DNA extraction efficiency between One BioMed’s Xceler8 automated platform with commercial available extraction kits (Qiagen and Roche). The FFPE tissue slices were subjected to deparaffinization process, pretreatment and then DNA extraction using the three mentioned platforms. The DNA quantity were determined with real-time PCR (BioRad CFX ) and gel electrophoresis. The amount of DNA extracted with the One BioMed’s X8 platform was found to be comparable with the other two manual extraction kits.

Keywords: DNA extraction, FFPE tissue, qiagen, roche, one biomed X8

Procedia PDF Downloads 107
5422 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong

Abstract:

Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: breadth-first search, BFS, graph ordering, graph algorithm

Procedia PDF Downloads 138
5421 Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms

Authors: Nor Asrina Binti Ramlee

Abstract:

Voltage sag, voltage swell, high-frequency noise and voltage transients are kinds of disturbances in power quality. They are also known as power quality events. Equipment used in the industry nowadays has become more sensitive to these events with the increasing complexity of equipment. This leads to the importance of distributing clean power quality to the consumer. To provide better service, the best analysis on power quality is very vital. Thus, this paper presents the events detection focusing on voltage sag and swell. The method is developed by applying time domain signal analysis using wavelet transform approach in MATLAB. Four types of mother wavelet namely Haar, Dmey, Daubechies, and Symlet are used to detect the events. This project analyzed real interrupted signal obtained from 22 kV transmission line in Skudai, Johor Bahru, Malaysia. The signals will be decomposed through the wavelet mothers. The best mother is the one that is capable to detect the time location of the event accurately.

Keywords: power quality, voltage sag, voltage swell, wavelet transform

Procedia PDF Downloads 372
5420 Preference Aggregation and Mechanism Design in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.

Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium

Procedia PDF Downloads 114
5419 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor

Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole

Abstract:

Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.

Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics

Procedia PDF Downloads 452
5418 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 251
5417 Networked Radar System to Increase Safety of Urban Railroad Crossing

Authors: Sergio Saponara, Luca Fanucci, Riccardo Cassettari, Ruggero Piernicola, Marco Righetto

Abstract:

The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.

Keywords: radar for safe mobility, railroad crossing, railway, transport safety

Procedia PDF Downloads 480
5416 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller

Procedia PDF Downloads 245
5415 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 271
5414 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
5413 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology

Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed

Abstract:

The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.

Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized

Procedia PDF Downloads 789
5412 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 254
5411 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 50
5410 Topic-to-Essay Generation with Event Element Constraints

Authors: Yufen Qin

Abstract:

Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text.

Keywords: event element, language model, natural language processing, topic-to-essay generation.

Procedia PDF Downloads 236
5409 Deradicalization for Former Terrorists through Entrepreneurship Program

Authors: Jamal Wiwoho, Pujiyono, Triyanto

Abstract:

Terrorism is a real enemy for all countries, including Indonesia. Bomb attacks in some parts of Indonesia are proof that Indonesia has serious problems with terrorism. Perpetrators of terror are arrested and imprisoned, and some of them were executed. However, this method did not succeed in stopping the terrorist attacks. Former terrorists continue to carry out bomb attacks. Therefore, this paper proposes a program towards deradicalization efforts of former terrorists through entrepreneurship. This is necessary because it is impossible to change their radical ideology. The program is also motivated by understanding that terrorists generally come from poor families. This program aims to occupy their time with business activities so there is no time to plan and carry out bomb attacks. This research is an empirical law study. Data were collected by literature study, observation, and in-depth interviews. Data were analyzed with the Miles and Huberman interactive model. The results show that the entrepreneurship program is effective to prevent terrorist attack. Former terrorists are busy with their business. Therefore, they have no time to carry out bomb attacks.

Keywords: deradicalization, terrorism, terrorists, entrepreneurship

Procedia PDF Downloads 271
5408 Managing the Cloud Procurement Process: Findings from a Case Study

Authors: Andreas Jede, Frank Teuteberg

Abstract:

Cloud computing (CC) has already gained overall appreciation in research and practice. Whereas the willingness to integrate cloud services in various IT environments is still unbroken, the previous CC procurement processes run mostly in an unorganized and non-standardized way. In practice, a sufficiently specific, yet applicable business process for the important acquisition phase is often lacking. And research does not appropriately remedy this deficiency yet. Therefore, this paper introduces a field-tested approach for CC procurement. Based on an extensive literature review and augmented by expert interviews, we designed a model that is validated and further refined through an in-depth real-life case study. For the detailed process description, we apply the event-driven process chain notation (EPC). The gained valuable insights into the case study may help CC research to shift to a more socio-technical area. For practice, next to giving useful organizational instructions we will provide extended checklists and lessons learned.

Keywords: cloud procurement process, IT-organization, event-driven process chain, in-depth case study

Procedia PDF Downloads 394
5407 Optimal Design of 3-Way Reversing Valve Considering Cavitation Effect

Authors: Myeong-Gon Lee, Yang-Gyun Kim, Tae-Young Kim, Seung-Ho Han

Abstract:

The high-pressure valve uses one set of 2-way valves for the purpose of reversing fluid direction. If there is no accurate control device for the 2-way valves, lots of surging can be generated. The surging is a kind of pressure ripple that occurs in rapid changes of fluid motions under inaccurate valve control. To reduce the surging effect, a 3-way reversing valve can be applied which provides a rapid and precise change of water flow directions without any accurate valve control system. However, a cavitation occurs due to a complicated internal trim shape of the 3-way reversing valve. The cavitation causes not only noise and vibration but also decreasing the efficiency of valve-operation, in which the bubbles generated below the saturated vapor pressure are collapsed rapidly at higher pressure zone. The shape optimization of the 3-way reversing valve to minimize the cavitation effect is necessary. In this study, the cavitation index according to the international standard ISA was introduced to estimate macroscopically the occurrence of the cavitation effect. Computational fluid dynamic analysis was carried out, and the cavitation effect was quantified by means of the percent of cavitation converted from calculated results of vapor volume fraction. In addition, the shape optimization of the 3-way reversing valve was performed by taking into account of the percent of cavitation.

Keywords: 3-Way reversing valve, cavitation, shape optimization, vapor volume fraction

Procedia PDF Downloads 371
5406 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 32
5405 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 79
5404 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree

Procedia PDF Downloads 353
5403 Coal Mining Safety Monitoring Using Wsn

Authors: Somdatta Saha

Abstract:

The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.

Keywords: ARM, embedded board, wireless sensor network (Zigbee)

Procedia PDF Downloads 340
5402 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 219
5401 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools

Authors: M. Rodionov, Z. Dedovets

Abstract:

The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.

Keywords: education, methodological system, the teaching of mathematics, students motivation

Procedia PDF Downloads 354
5400 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 20
5399 The Role of Social Media in Activating Youth Participation in the Community

Authors: Raya Hamed Hilal Al Maamari

Abstract:

The Gulf societies have been undergoing radical changes due to the technology transfer. It altered the humanities attitudes, especially, youth habits as they have become an addicted to using social media. This study aimed to find out the ratio of social media in guiding youth to participate with government’s institutions in decision-making and developing their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young from different gulf countries, using an electronic questionnaire, as well as, some interviews with famous leaders of youth groups. Finally, the researcher suggested some effective ways activate youth efforts using social media in an effective manner to plan for the development policy in the community. The findings illustrated that social media plays a vital role in encouraging youth to participate enthusiastically in providing services. Noticeably, social media contains large numbers of youth. Therefore, the influences will be widely and feasible. Moreover, the study indicated the fact that most of the youth teamwork started in social media. Then, it has been growing in the real society.

Keywords: community, participation, social media, youth

Procedia PDF Downloads 375
5398 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 124