Search results for: model based clustering
35742 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 47835741 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem
Authors: Abdolsalam Ghaderi
Abstract:
In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search
Procedia PDF Downloads 27035740 Self-Tuning Robot Control Based on Subspace Identification
Authors: Mathias Marquardt, Peter Dünow, Sandra Baßler
Abstract:
The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions.Keywords: auto tuning, balanced robot, closed loop identification, subspace identification
Procedia PDF Downloads 38035739 A Model for Academic Coaching for Success and Inclusive Excellence in Science, Technology, Engineering, and Mathematics Education
Authors: Sylvanus N. Wosu
Abstract:
Research shows that factors, such as low motivation, preparation, resources, emotional and social integration, and fears of risk-taking, are the most common barriers to access, matriculation, and retention into science, technology, engineering, and mathematics (STEM) disciplines for underrepresented (URM) students. These factors have been shown to impact students’ attraction and success in STEM fields. Standardized tests such as the SAT and ACT often used as predictor of success, are not always true predictors of success for African and Hispanic American students. Without an adequate academic support environment, even a high SAT score does not guarantee academic success in science and engineering. This paper proposes a model for Academic Coaching for building success and inclusive excellence in STEM education. Academic coaching is framed as a process of motivating students to be independent learners through relational mentorship, facilitating learning supports inside and outside of the classroom or school environment, and developing problem-solving skills and success attitudes that lead to higher performance in the specific subjects. The model is formulated based on best strategies and practices for enriching Academic Performance Impact skills and motivating students’ interests in STEM. A scaled model for measuring the Academic Performance Impact (API) index and STEM is discussed. The study correlates API with state standardized test and shows that the average impact of those skills can be predicted by the Academic Performance Impact (API) index or Academic Preparedness Index.Keywords: diversity, equity, graduate education, inclusion, inclusive excellence, model
Procedia PDF Downloads 20135738 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode
Authors: Sh. Heidari, A. J. Andrews, A. Oberoi
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon
Procedia PDF Downloads 50035737 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision
Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.
Abstract:
To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model
Procedia PDF Downloads 18935736 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 14935735 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 13635734 Spare Part Inventory Optimization Policy: A Study Literature
Authors: Zukhrof Romadhon, Nani Kurniati
Abstract:
Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.Keywords: spare part, spare part inventory, inventory model, optimization, maintenance
Procedia PDF Downloads 6235733 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control
Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed
Abstract:
This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model
Procedia PDF Downloads 44435732 Analyzing Damage of the Cutting Tools out of Carbide Metallic during the Turning of a Soaked and Not Hardened Steel XC38
Authors: Mohamed Seghouani, Ahmed Tafraoui, Soltane Lebaili
Abstract:
The purpose of this study widened knowledge on the use of the cutting tools out of metal carbide and to define it the influence of the elements of the mode of cut on the behavior of these tools during the machining of treated steel XC38 and untreated. This work aims at evolution determined in experiments of the wear of a cutting tool out of metal carbide with plate reported of P30 nuance for an operation of slide-lathing in turning on soaked and not hardened steel XC38 test-tubes. This research is based on the model of Taylor to determine the life span of the cutting tool according to the various parameters of cut, like the cutting speed Vc, the advance of cut a, the depth of cutting P. In order to express the operational limits of the tool for slide-lathing in a preventive way. The model makes it possible to determine the time of change of the tool and to regard it as a constraint for the respect of the roughness of the workpiece during a work of series in conventional machining.Keywords: machining, wear, lifespan, model of Taylor, cutting tool, carburize metal
Procedia PDF Downloads 39235731 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 45935730 Analysis on Greenhouse Gas Emissions Potential by Deploying the Green Cars in Korean Road Transport Sector
Authors: Sungjun Hong, Yanghon Chung, Nyunbae Park, Sangyong Park
Abstract:
South Korea, as the 7th largest greenhouse gas emitting country in 2011, announced that the national reduction target of greenhouse gas emissions was 30% based on BAU (Business As Usual) by 2020. And the reduction rate of the transport sector is 34.3% which is the highest figure among all sectors. This paper attempts to analyze the environmental effect on deploying the green cars in Korean road transport sector. In order to calculate the greenhouse gas emissions, the LEAP model is applied in this study.Keywords: green car, greenhouse gas, LEAP model, road transport sector
Procedia PDF Downloads 61535729 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator
Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard
Abstract:
Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.Keywords: blade tip timing, blisk, finite element, vibration measurement
Procedia PDF Downloads 31135728 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System
Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi
Abstract:
Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model
Procedia PDF Downloads 20535727 The Latent Model of Linguistic Features in Korean College Students’ L2 Argumentative Writings: Syntactic Complexity, Lexical Complexity, and Fluency
Authors: Jiyoung Bae, Gyoomi Kim
Abstract:
This study explores a range of linguistic features used in Korean college students’ argumentative writings for the purpose of developing a model that identifies variables which predict writing proficiencies. This study investigated the latent variable structure of L2 linguistic features, including syntactic complexity, the lexical complexity, and fluency. One hundred forty-six university students in Korea participated in this study. The results of the study’s confirmatory factor analysis (CFA) showed that indicators of linguistic features from this study-provided a foundation for re-categorizing indicators found in extant research on L2 Korean writers depending on each latent variable of linguistic features. The CFA models indicated one measurement model of L2 syntactic complexity and L2 learners’ writing proficiency; these two latent factors were correlated with each other. Based on the overall findings of the study, integrated linguistic features of L2 writings suggested some pedagogical implications in L2 writing instructions.Keywords: linguistic features, syntactic complexity, lexical complexity, fluency
Procedia PDF Downloads 17035726 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 9535725 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model
Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.
Abstract:
This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM
Procedia PDF Downloads 39235724 Three-Dimensional Model of Leisure Activities: Activity, Relationship, and Expertise
Authors: Taekyun Hur, Yoonyoung Kim, Junkyu Lim
Abstract:
Previous works on leisure activities had been categorizing activities arbitrarily and subjectively while focusing on a single dimension (e.g. active-passive, individual-group). To overcome these problems, this study proposed a Korean leisure activities’ matrix model that considered multidimensional features of leisure activities, which was comprised of 3 main factors and 6 sub factors: (a) Active (physical, mental), (b) Relational (quantity, quality), (c) Expert (entry barrier, possibility of improving). We developed items for measuring the degree of each dimension for every leisure activity. Using the developed Leisure Activities Dimensions (LAD) questionnaire, we investigated the presented dimensions of a total of 78 leisure activities which had been enjoyed by most Koreans recently (e.g. watching movie, taking a walk, watching media). The study sample consisted of 1348 people (726 men, 658 women) ranging in age from teenagers to elderlies in their seventies. This study gathered 60 data for each leisure activity, a total of 4860 data, which were used for statistical analysis. First, this study compared 3-factor model (Activity, Relation, Expertise) fit with 6-factor model (physical activity, mental activity, relational quantity, relational quality, entry barrier, possibility of improving) fit by using confirmatory factor analysis. Based on several goodness-of-fit indicators, the 6-factor model for leisure activities was a better fit for the data. This result indicates that it is adequate to take account of enough dimensions of leisure activities (6-dimensions in our study) to specifically apprehend each leisure attributes. In addition, the 78 leisure activities were cluster-analyzed with the scores calculated based on the 6-factor model, which resulted in 8 leisure activity groups. Cluster 1 (e.g. group sports, group musical activity) and Cluster 5 (e.g. individual sports) had generally higher scores on all dimensions than others, but Cluster 5 had lower relational quantity than Cluster 1. In contrast, Cluster 3 (e.g. SNS, shopping) and Cluster 6 (e.g. playing a lottery, taking a nap) had low scores on a whole, though Cluster 3 showed medium levels of relational quantity and quality. Cluster 2 (e.g. machine operating, handwork/invention) required high expertise and mental activity, but low physical activity. Cluster 4 indicated high mental activity and relational quantity despite low expertise. Cluster 7 (e.g. tour, joining festival) required not only moderate degrees of physical activity and relation, but low expertise. Lastly, Cluster 8 (e.g. meditation, information searching) had the appearance of high mental activity. Even though clusters of our study had a few similarities with preexisting taxonomy of leisure activities, there was clear distinctiveness between them. Unlike the preexisting taxonomy that had been created subjectively, we assorted 78 leisure activities based on objective figures of 6-dimensions. We also could identify that some leisure activities, which used to belong to the same leisure group, were included in different clusters (e.g. filed ball sports, net sports) because of different features. In other words, the results can provide a different perspective on leisure activities research and be helpful for figuring out what various characteristics leisure participants have.Keywords: leisure, dimensional model, activity, relationship, expertise
Procedia PDF Downloads 31135723 A Model-Driven Approach of User Interface for MVP Rich Internet Application
Authors: Sarra Roubi, Mohammed Erramdani, Samir Mbarki
Abstract:
This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.Keywords: metamodel, model-driven engineering, MVP, rich internet application, transformation, user interface
Procedia PDF Downloads 35335722 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 27635721 Kauffman Model on a Network of Containers
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model.Keywords: agglomeration, autocatalytic set, differential equation, Kauffman model
Procedia PDF Downloads 5835720 Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand
Authors: Sanjeev Mukherjee, Satyendra Mittal
Abstract:
This paper presents the experimental investigations on the behaviour of a group of single, double and triple helical screw anchors embedded vertically at the same level in sand. The tests were carried out on one, two, three and four numbers of anchors in sand for different depths of embedment keeping shallow and deep mode of behaviour in mind. The testing program included 48 tests conducted on three model anchors installed in sand whose density kept constant throughout the tests. It was observed that the ultimate pullout load varied significantly with the installation depth of the anchor and the number of anchors. The apparent coefficient of friction (f*) between anchor and soil was also calculated based on the test results. It was found that the apparent coefficient of friction varies between 1.02 and 4.76 for 1, 2, 3, and 4 numbers of single, double and triple helical screw anchors. Plate load tests conducted on model soil showed that the value of ф increases from 35o for virgin soil to 48o for soil with four double screw helical anchors. The graphs of ultimate pullout capacity of a group of two, three and four no. of anchors with respect to one anchor were plotted and design equations have been proposed correlating them. Based on these findings, it has been concluded that the load-displacement relationships for all groups can be reduced to a common curve. A 3-D finite element model, PLAXIS, was used to confirm the results obtained from laboratory tests and the agreement is excellent.Keywords: apparent coefficient of friction, helical screw anchor, installation depth, plate load test
Procedia PDF Downloads 55535719 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters
Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu
Abstract:
Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.Keywords: induction heating, LQR controller, skin depth, temperature field
Procedia PDF Downloads 4235718 Immersive Block Scheduling in Higher Education: A Case Study in Curriculum Reform and Increased Student Success
Authors: Thomas Roche, Erica Wilson, Elizabeth Goode
Abstract:
Universities across the globe are considering how to effect meaningful change in their higher education (HE) delivery in the face of increasingly diverse student cohorts and shifting student learning preferences. This paper reports on a descriptive case study of whole-of-institution curriculum reform at one regional Australian university, where more traditional 13-week semesters were replaced with a 6-week immersive block model drawing on active learning pedagogy. Based on a synthesis of literature in best practice HE pedagogy and principles, the case study draws on student performance data and senior management staff interviews (N = 5) to outline the key changes necessary for successful HE transformation to deliver increased student pass rates and retention. The findings from this case study indicate that an institutional transformation to an immersive block model requires both a considered change in institutional policy and process as well as the appropriate resourcing of roles, governance committees, technical solutions, and, importantly, communities of practice. Implications for practice at higher education institutions considering reforming their curriculum model are also discussed.Keywords: student retention, immersive scheduling, block model, curriculum reform, active learning, higher education pedagogy, higher education policy
Procedia PDF Downloads 7635717 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable
Authors: Seon Soon Choi
Abstract:
The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable
Procedia PDF Downloads 41035716 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP
Authors: Faisal Islam, J. Ramkumar
Abstract:
The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)
Procedia PDF Downloads 53035715 Adjustment of Parents of Children with Autism: A Multivariate Model
Authors: Ayelet Siman-Tov, Shlomo Kaniel
Abstract:
Objectives: The research validates a multivariate model that predicts parental adjustment to coping successfully with an autistic child. The model comprises four elements: parental stress, parental resources, parental adjustment and the child's autism symptoms. Background and aims: The purpose of the current study is the construction and validation of a model for the adjustment of parents and a child with autism. The suggested model is based on theoretical views on stress and links personal resources, stress, perception, parental mental health and quality of marriage and child adjustment with autism. The family stress approach focuses on the family as a system made up of a dynamic interaction between its members, who constitute interdependent parts of the system, and thus, a change in one family member brings about changes in the processes of the entire family system. From this perspective, a rise of new demands in the family and stress in the role of one family member affects the family system as a whole. Materials and methods: 176 parents of children aged between 6 to 16 diagnosed with ASD answered several questionnaires measuring parental stress, personal resources (sense of coherence, locus of control, social support), adjustment (mental health and marriage quality) and the child's autism symptoms. Results: Path analysis showed that a sense of coherence, internal locus of control, social support and quality of marriage increase the ability to cope with the stress of parenting an autistic child. Directions for further research are suggested.Keywords: stress, adjustment, resources, Autism, parents, coherence
Procedia PDF Downloads 14035714 Modelling of Aerosols in Absorption Column
Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this, aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation
Procedia PDF Downloads 24435713 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem
Authors: Takahiro Hino, Michiharu Maeda
Abstract:
Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem
Procedia PDF Downloads 553