Search results for: temperature distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11273

Search results for: temperature distribution

8993 M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass

Authors: Won-Gon Kim

Abstract:

A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant.

Keywords: cardiopulmonary bypass, M-number, aortic cannula, pressure-flow characteristics

Procedia PDF Downloads 239
8992 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 239
8991 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 175
8990 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 22
8989 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 121
8988 Impacts of Climate Change on Food Grain Yield and Its Variability across Seasons and Altitudes in Odisha

Authors: Dibakar Sahoo, Sridevi Gummadi

Abstract:

The focus of the study is to empirically analyse the climatic impacts on foodgrain yield and its variability across seasons and altitudes in Odisha, one of the most vulnerable states in India. The study uses Just-Pope Stochastic Production function by using two-step Feasible Generalized Least Square (FGLS): mean equation estimation and variance equation estimation. The study uses the panel data on foodgrain yield, rainfall and temperature for 13 districts during the period 1984-2013. The study considers four seasons: winter (December-February), summer (March-May), Rainy (June-September) and autumn (October-November). The districts under consideration have been categorized under three altitude regions such as low (< 70 masl), middle (153-305 masl) and high (>305 masl) altitudes. The results show that an increase in the standard deviations of monthly rainfall during rainy and autumn seasons have an adversely significant impact on the mean yield of foodgrains in Odisha. The summer temperature has beneficial effects by significantly increasing mean yield as the summer season is associated with harvesting stage of Rabi crops. The changing pattern of temperature has increasing effect on the yield variability of foodgrains during the summer season, whereas it has a decreasing effect on yield variability of foodgrains during the Rainy season. Moreover, the positive expected signs of trend variable in both mean and variance equation suggests that foodgrain yield and its variability increases with time. On the other hand, a change in mean levels of rainfall and temperature during different seasons has heterogeneous impacts either harmful or beneficial depending on the altitudes. These findings imply that adaptation strategies should be tailor-made to minimize the adverse impacts of climate change and variability for sustainable development across seasons and altitudes in Odisha agriculture.

Keywords: altitude, adaptation strategies, climate change, foodgrain

Procedia PDF Downloads 236
8987 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data

Authors: Mohamed Amhal, Jose Sayritupac

Abstract:

Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.

Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems

Procedia PDF Downloads 165
8986 Improved Production, Purification and Characterization of Invertase from Penicillium lilacinum by Shaken Flask Technique of Submerged Fermentation

Authors: Kashif Ahmed

Abstract:

Recent years researchers have been motivated towards extensive exploring of living organism, which could be utilized effectively in intense industrial conditions. The present study shows enhanced production, purification and characterization of industrial enzyme, invertase (Beta-D-fructofuranosidase) from Penicillium lilacinum. Various agricultural based by-products (cotton stalk, sunflower waste, rice husk, molasses and date syrup) were used as energy source. The highest amount of enzyme (13.05 Units/mL) was produced when the strain was cultured on growth medium containing date syrup as energy source. Yeast extract was used as nitrogen source after 96 h of incubation at incubation temperature of 40º C. Initial pH of medium was 8.0, inoculum size 6x10⁶ conidia and 200 rev/min agitation rate. The enzyme was also purified (7 folds than crude) and characterized. Molecular mass of purified enzyme (65 kDa) was determined by 10 % SDS-PAGE. Lineweaver-Burk Plot was used to determine Kinetic constants (Vmax 178.6 U/mL/min and Km 2.76 mM). Temperature and pH optima were 55º C and 5.5 respectively. MnCl₂ (52.9 %), MgSO₄ (48.9 %), BaCl₂ (24.6 %), MgCl₂ (9.6 %), CoCl₂ (5.7 %) and NaCl (4.2 %) enhanced the relative activity of enzyme and HgCl₂ (-92.8 %), CuSO₄ (-80.2 %) and CuCl₂ (-76.6 %) were proved inhibitors. The strain was showing enzyme activity even at extreme conditions of temperature (up to 60º C) and pH (up to 9), so it can be used in industries.

Keywords: invertase, Penicillium lilacinum, submerged fermentation, industrial enzyme

Procedia PDF Downloads 146
8985 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 159
8984 DEMs: A Multivariate Comparison Approach

Authors: Juan Francisco Reinoso Gordo, Francisco Javier Ariza-López, José Rodríguez Avi, Domingo Barrera Rosillo

Abstract:

The evaluation of the quality of a data product is based on the comparison of the product with a reference of greater accuracy. In the case of MDE data products, quality assessment usually focuses on positional accuracy and few studies consider other terrain characteristics, such as slope and orientation. The proposal that is made consists of evaluating the similarity of two DEMs (a product and a reference), through the joint analysis of the distribution functions of the variables of interest, for example, elevations, slopes and orientations. This is a multivariable approach that focuses on distribution functions, not on single parameters such as mean values or dispersions (e.g. root mean squared error or variance). This is considered to be a more holistic approach. The use of the Kolmogorov-Smirnov test is proposed due to its non-parametric nature, since the distributions of the variables of interest cannot always be adequately modeled by parametric models (e.g. the Normal distribution model). In addition, its application to the multivariate case is carried out jointly by means of a single test on the convolution of the distribution functions of the variables considered, which avoids the use of corrections such as Bonferroni when several statistics hypothesis tests are carried out together. In this work, two DEM products have been considered, DEM02 with a resolution of 2x2 meters and DEM05 with a resolution of 5x5 meters, both generated by the National Geographic Institute of Spain. DEM02 is considered as the reference and DEM05 as the product to be evaluated. In addition, the slope and aspect derived models have been calculated by GIS operations on the two DEM datasets. Through sample simulation processes, the adequate behavior of the Kolmogorov-Smirnov statistical test has been verified when the null hypothesis is true, which allows calibrating the value of the statistic for the desired significance value (e.g. 5%). Once the process has been calibrated, the same process can be applied to compare the similarity of different DEM data sets (e.g. the DEM05 versus the DEM02). In summary, an innovative alternative for the comparison of DEM data sets based on a multinomial non-parametric perspective has been proposed by means of a single Kolmogorov-Smirnov test. This new approach could be extended to other DEM features of interest (e.g. curvature, etc.) and to more than three variables

Keywords: data quality, DEM, kolmogorov-smirnov test, multivariate DEM comparison

Procedia PDF Downloads 109
8983 Thermal Effects of Phase Transitions of Cerium and Neodymium

Authors: M. Khundadze, V. Varazashvili, N. Lejava, R. Jorbenadze

Abstract:

Phase transitions of cerium and neodymium are investigated by using high temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and in 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported.

Keywords: cerium, calorimetry, neodymium, enthalpy of phase transitions, neodymium

Procedia PDF Downloads 359
8982 Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads.

Keywords: fatigue crack propagation life, magnesium alloys, maximum fatigue load, probability

Procedia PDF Downloads 378
8981 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 92
8980 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 128
8979 Pudhaiyal: A Maze-Based Treasure Hunt Game for Tamil Words

Authors: Aarthy Anandan, Anitha Narasimhan, Madhan Karky

Abstract:

Word-based games are popular in helping people to improve their vocabulary skills. Games like ‘word search’ and crosswords provide a smart way of increasing vocabulary skills. Word search games are fun to play, but also educational which actually helps to learn a language. Finding the words from word search puzzle helps the player to remember words in an easier way, and it also helps to learn the spellings of words. In this paper, we present a tile distribution algorithm for a Maze-Based Treasure Hunt Game 'Pudhaiyal’ for Tamil words, which describes how words can be distributed horizontally, vertically or diagonally in a 10 x 10 grid. Along with the tile distribution algorithm, we also present an algorithm for the scoring model of the game. The proposed game has been tested with 20,000 Tamil words.

Keywords: Pudhaiyal, Tamil word game, word search, scoring, maze, algorithm

Procedia PDF Downloads 433
8978 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: cyclic loading, finite element analysis, Prager kinematic hardening model, torsion of shaft

Procedia PDF Downloads 404
8977 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: Almontas Vilutis, Vytenis Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: friction, composite, carbide, factors

Procedia PDF Downloads 77
8976 Leverage Effect for Volatility with Generalized Laplace Error

Authors: Farrukh Javed, Krzysztof Podgórski

Abstract:

We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.

Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models

Procedia PDF Downloads 379
8975 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios

Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu

Abstract:

Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.

Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method

Procedia PDF Downloads 159
8974 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 35
8973 Non-Revenue Water Management in Palestine

Authors: Samah Jawad Jabari

Abstract:

Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.

Keywords: non-revenue water, water auditing, leak detection, water meters

Procedia PDF Downloads 288
8972 Polar Nanoregions in Lead-Free Relaxor Ceramics: Unveiling through Impedance Spectroscopy

Authors: Mohammed Mesrar, Hamza El Malki, Hamza Mesrar

Abstract:

In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.

Keywords: (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3, Rietveld refinement, Scanning electron microscopy (SEM), Williamson-Hall plots, charge density distribution, dielectric properties

Procedia PDF Downloads 53
8971 Production and Characterization of Ce3+: Si2N2O Phosphors for White Light-Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

Si2N2O (Sinoite) is an inorganic-based oxynitride material that reveals promising phosphor candidates for white light-emitting diodes (WLEDs). However, there is now limited knowledge to explain the synthesis of Si2N2O for this purpose. Here, to the best of authors’ knowledge, we report the first time the production of Si2N2O based phosphors by CeO2, SiO2, Si3N4 from main starting powders, and Li2O sintering additive through spark plasma sintering (SPS) route. The processing parameters, e.g., pressure, temperature, and sintering time, were optimized to reach the monophase Si2N2O containing samples. The lattice parameter, crystallite size, and amount of formation phases were characterized in detail by X-ray diffraction (XRD). Grain morphology, particle size, and distribution were analyzed by scanning and transmission electron microscopes (SEM and TEM). Cathodoluminescence (CL) in SEM and photoluminescence (PL) analyses were conducted on the samples to determine the excitation, and emission characteristics of Ce3+ activated Si2N2O. Results showed that the Si2N2O phase in a maximum 90% ratio was obtained by sintering for 15 minutes at 1650oC under 30 MPa pressure. Based on the SEM-CL and PL measurements, Ce3+: Si2N2O phosphor shows a broad emission summit between 400-700 nm that corresponds to white light. The present research was supported by TUBITAK under project number 217M667.

Keywords: cerium, oxynitride, phosphors, sinoite, Si₂N₂O

Procedia PDF Downloads 103
8970 Concerns for Extreme Climate Conditions and Their Implications in Southwest Nigeria

Authors: Oyenike Eludoyin

Abstract:

Extreme climate conditions are deviation from the norms and are capable of causing upsets in many important environmental parameter including disruption of water balance and air temperature balance. Studies have shown that extreme climate conditions can foretell disaster in regions with inadequate early warning systems. In this paper, we combined geographical information systems, statistics and social surveys to evaluate the physiologic indices [(Dewpoint Temperature (Td), Effective Temperature Index (ETI) and Relative Strain Index (RSI)] and extreme climate conditions in different parts of southwest Nigeria. This was with the view to assessing the nature and the impact of the conditions on the people and their coping strategies. The results indicate that minimum, mean and maximum temperatures were higher in 1960-1990 than 1991-2013 periods at most areas, and more than 80% of the people adapt to thermal stress by changing wear type or cloth, installing air conditioner and fan at home and/or work place and sleeping outside at certain period of the night and day. With respect to livelihoods, about 52% of the interviewed farmers indicated that too early rainfall, late rainfall, prolonged dryness after an initial rainfall, excessive rainfall and windstorms caused low crop yields. Main (76%) coping strategies were changing of planting dates, diversification of crops, and practices of mulching and intercropping. Government or institutional support was less than 20%.

Keywords: coping strategies, extreme climate, livelihoods, physiologic comfort

Procedia PDF Downloads 276
8969 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 476
8968 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 215
8967 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment

Authors: Jana Petru, Marie Kudrnova

Abstract:

The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.

Keywords: corrosion, experimental device, molten salt, steel

Procedia PDF Downloads 116
8966 The Effect of System Parameters on the Biogas Production from Poultry Rendering Plant Anaerobic Digesters

Authors: N. Lovanh, J. Loughrin, G. Ruiz-Aguilar

Abstract:

Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system parameters on methane production from anaerobic digesters utilizing poultry rendering plant wastewater was carried out. Anaerobic batch reactors and continuous flow system subjected to different operation conditions (i.e., flow rate, temperature, and etc.) containing poultry rendering wastewater were set up to evaluate methane potential from each scenario. Biogas productions were sampled and monitored by gas chromatography and photoacoustic gas analyzer over six months of operation. The results showed that methane productions increased as the temperature increased. However, there is an upper limit to the increase in the temperature on the methane production. Flow rates and type of systems (batch vs. plug-flow regime) also had a major effect on methane production. Constant biogas production was observed in plug-flow system whereas batch system produced biogas quicker and tapering off toward the end of the six-month study. Based on these results, it is paramount to consider operating conditions and system setup in optimizing biogas production from agricultural wastewater.

Keywords: anaerobic digestion, methane, poultry rendering wastewater, biotechnology

Procedia PDF Downloads 387
8965 The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

Authors: Imen Hamed, Burcu Ak, Oya Işık, Leyla Uslu, Kubilay Kazım Vursavuş

Abstract:

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p<0.05) for the other 3 species. The growth decreased as temperature and salinity increased since the lowest growth was noticed for the 30°C/60‰ group. The chlorophyll a content decreased also as temperature increased however when the NaCl concentration increased an augmentation of the content was noticed . In the 17th day of experiment the highest carotenoids concentration was reported for D. bardawil 20°C/30‰ (65,639±0,400 μg.mL1) and the most important β carotene concentration was for D. salina 20°C/60‰ (8,98E-07±0,013 mol/L).

Keywords: Dunaliella sp., Dunaliella salina, Dunaliella bardawil, growth, pigments, stress factors

Procedia PDF Downloads 306
8964 Heat Exchanger Optimization of a Domestic Refrigerator with Separate Cooling Circuits

Authors: Tugba Tosun, Mert Tosun

Abstract:

Cooling system performance and energy consumption in the bypass two-circuit cycle have been studied experimentally to find optimum evaporator type and geometry, capillary tube diameter and capillary length. Two types of evaporators, such as wire on the tube and finned tube evaporators were used for the experiments in the fresh food compartment. As capillary tube inner diameter and total length; 0.66 mm and 0.8mm, and 3000 mm and 3500 mm were selected as parameters, respectively. Experiments were performed at the 25⁰C ambient temperature while the average temperature of the fresh food compartment is kept at 5⁰C and the highest package temperature of the freezer compartment is kept at -18⁰C, which are defined in IEC 62552 European standard. The Design of Experiments (DOE) technique which is six sigma method has been used to indicate of effective parameters in the bypass two-circuit cycle. The experimental results revealed that the most effective parameter of the system is the evaporator type. Finned tube evaporator with 12 tube passes was found as the best option for the bypass two-circuit refrigeration cycle among the 8 different opportunities. The optimum cooling performance and the lowest energy consumption were provided with 0.66 mm capillary tube inner diameter and 3500 mm capillary tube length.

Keywords: capillary tube, energy consumption, heat exchanger, refrigerator, separate cooling circuits

Procedia PDF Downloads 158